Bayesian GGE model for heteroscedastic multienvironmental trials.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142572 https://doi.org/10.1002/csc2.20696 |
Resumo: | The dissection of genotype×environment interaction (GEI) is a crucial aspect ofthe final stages of plant breeding pipelines and recommendation of cultivars. Linear-bilinear models used to analyze this interaction, such as the additive main effectsand multiplicative interaction (AMMI) and genotype plus GEI (GGE), often assumehomogeneity of the residual variances across environments which affects the esti-mates and therefore, interpretations and conclusions. Our main objective was topropose a GGE model that considers heteroscedasticity across environments usingBayesian inference and to evaluate its implications in the interpretation of real andsimulated data. The GGE model assuming common variance was also fitted for com-parison purposes. The great flexibility of the Bayesian inference is transferred to thebiplots, allowing the construction of credible regions for genotypic and environmen-tal scores. The inference on the stability and adaptability of genotypes might changewhen heteroscedasticity is ignored. When real data are used, different patterns of cor-relations between environments also affect the representativeness and discriminationof the target environment. The modeling of heteroscedasticity allowed the clusteringof environments into subgroups, with similar effects for GEI. The proposed GGEmodel was more adequate and realistic to deal with scenarios of heterogeneous vari-ance in multienvironment trials, which can be useful for exploiting the GEI. |
id |
EMBR_9b9fbb3b48a7b5418386c092e838f3bc |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1142572 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Bayesian GGE model for heteroscedastic multienvironmental trials.Interação meio ambienteModelo mistoEnsaio de rendimentoEnsaio de cultivarEstabilidadeMelhoramento VegetalVariedadeGenótipoThe dissection of genotype×environment interaction (GEI) is a crucial aspect ofthe final stages of plant breeding pipelines and recommendation of cultivars. Linear-bilinear models used to analyze this interaction, such as the additive main effectsand multiplicative interaction (AMMI) and genotype plus GEI (GGE), often assumehomogeneity of the residual variances across environments which affects the esti-mates and therefore, interpretations and conclusions. Our main objective was topropose a GGE model that considers heteroscedasticity across environments usingBayesian inference and to evaluate its implications in the interpretation of real andsimulated data. The GGE model assuming common variance was also fitted for com-parison purposes. The great flexibility of the Bayesian inference is transferred to thebiplots, allowing the construction of credible regions for genotypic and environmen-tal scores. The inference on the stability and adaptability of genotypes might changewhen heteroscedasticity is ignored. When real data are used, different patterns of cor-relations between environments also affect the representativeness and discriminationof the target environment. The modeling of heteroscedasticity allowed the clusteringof environments into subgroups, with similar effects for GEI. The proposed GGEmodel was more adequate and realistic to deal with scenarios of heterogeneous vari-ance in multienvironment trials, which can be useful for exploiting the GEI.LUCIANO ANTONIO DE OLIVEIRA, Universidade Federal da Grande Dourados; CARLOS PEREIRA DA SILVA, Universidade Federal de Lavras; ALESSANDRA QUERINO DA SILVA, Universidade Federal da Grande Dourados; CRISTIAN TIAGO ERAZO MENDES, Universidade Federal de Lavras; JOEL JORGE NUVUNGA, Universidade Eduardo Mondlane; JOSÉ AIRTON RODRIGUES NUNES, Universidade Federal de Lavras; RAFAEL AUGUSTO DA COSTA PARRELLA, CNPMS; MARCIO BALESTE, Universidade Federal de Lavras; JÚLIO SÍLVIO DE SOUSA BUENO FILHO, Universidade Federal de Lavras.OLIVEIRA, L. A. deSILVA, C. P. daSILVA, A. Q. daMENDES, C. T. E.NUVUNGA, J. J.NUNES, J. A. R.PARRELLA, R. A. da C.BALESTE, M.BUENO FILHO, J. S. de S.2022-06-15T10:20:15Z2022-06-15T10:20:15Z2022-05-022022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCrop Science, v. 62, p. 982-996, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142572https://doi.org/10.1002/csc2.20696enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-06-15T10:20:24Zoai:www.alice.cnptia.embrapa.br:doc/1142572Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-06-15T10:20:24falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-06-15T10:20:24Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Bayesian GGE model for heteroscedastic multienvironmental trials. |
title |
Bayesian GGE model for heteroscedastic multienvironmental trials. |
spellingShingle |
Bayesian GGE model for heteroscedastic multienvironmental trials. OLIVEIRA, L. A. de Interação meio ambiente Modelo misto Ensaio de rendimento Ensaio de cultivar Estabilidade Melhoramento Vegetal Variedade Genótipo |
title_short |
Bayesian GGE model for heteroscedastic multienvironmental trials. |
title_full |
Bayesian GGE model for heteroscedastic multienvironmental trials. |
title_fullStr |
Bayesian GGE model for heteroscedastic multienvironmental trials. |
title_full_unstemmed |
Bayesian GGE model for heteroscedastic multienvironmental trials. |
title_sort |
Bayesian GGE model for heteroscedastic multienvironmental trials. |
author |
OLIVEIRA, L. A. de |
author_facet |
OLIVEIRA, L. A. de SILVA, C. P. da SILVA, A. Q. da MENDES, C. T. E. NUVUNGA, J. J. NUNES, J. A. R. PARRELLA, R. A. da C. BALESTE, M. BUENO FILHO, J. S. de S. |
author_role |
author |
author2 |
SILVA, C. P. da SILVA, A. Q. da MENDES, C. T. E. NUVUNGA, J. J. NUNES, J. A. R. PARRELLA, R. A. da C. BALESTE, M. BUENO FILHO, J. S. de S. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
LUCIANO ANTONIO DE OLIVEIRA, Universidade Federal da Grande Dourados; CARLOS PEREIRA DA SILVA, Universidade Federal de Lavras; ALESSANDRA QUERINO DA SILVA, Universidade Federal da Grande Dourados; CRISTIAN TIAGO ERAZO MENDES, Universidade Federal de Lavras; JOEL JORGE NUVUNGA, Universidade Eduardo Mondlane; JOSÉ AIRTON RODRIGUES NUNES, Universidade Federal de Lavras; RAFAEL AUGUSTO DA COSTA PARRELLA, CNPMS; MARCIO BALESTE, Universidade Federal de Lavras; JÚLIO SÍLVIO DE SOUSA BUENO FILHO, Universidade Federal de Lavras. |
dc.contributor.author.fl_str_mv |
OLIVEIRA, L. A. de SILVA, C. P. da SILVA, A. Q. da MENDES, C. T. E. NUVUNGA, J. J. NUNES, J. A. R. PARRELLA, R. A. da C. BALESTE, M. BUENO FILHO, J. S. de S. |
dc.subject.por.fl_str_mv |
Interação meio ambiente Modelo misto Ensaio de rendimento Ensaio de cultivar Estabilidade Melhoramento Vegetal Variedade Genótipo |
topic |
Interação meio ambiente Modelo misto Ensaio de rendimento Ensaio de cultivar Estabilidade Melhoramento Vegetal Variedade Genótipo |
description |
The dissection of genotype×environment interaction (GEI) is a crucial aspect ofthe final stages of plant breeding pipelines and recommendation of cultivars. Linear-bilinear models used to analyze this interaction, such as the additive main effectsand multiplicative interaction (AMMI) and genotype plus GEI (GGE), often assumehomogeneity of the residual variances across environments which affects the esti-mates and therefore, interpretations and conclusions. Our main objective was topropose a GGE model that considers heteroscedasticity across environments usingBayesian inference and to evaluate its implications in the interpretation of real andsimulated data. The GGE model assuming common variance was also fitted for com-parison purposes. The great flexibility of the Bayesian inference is transferred to thebiplots, allowing the construction of credible regions for genotypic and environmen-tal scores. The inference on the stability and adaptability of genotypes might changewhen heteroscedasticity is ignored. When real data are used, different patterns of cor-relations between environments also affect the representativeness and discriminationof the target environment. The modeling of heteroscedasticity allowed the clusteringof environments into subgroups, with similar effects for GEI. The proposed GGEmodel was more adequate and realistic to deal with scenarios of heterogeneous vari-ance in multienvironment trials, which can be useful for exploiting the GEI. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-15T10:20:15Z 2022-06-15T10:20:15Z 2022-05-02 2022 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Crop Science, v. 62, p. 982-996, 2022. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142572 https://doi.org/10.1002/csc2.20696 |
identifier_str_mv |
Crop Science, v. 62, p. 982-996, 2022. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142572 https://doi.org/10.1002/csc2.20696 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503524505092096 |