Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles

Detalhes bibliográficos
Autor(a) principal: Borrego, L.P.
Data de Publicação: 2014
Outros Autores: Costa, J.D.M., Ferreira, J.A.M., Silva, H.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.19/2812
Resumo: Nanoparticle reinforcement of the matrix in laminates has been recently explored to improve mechanical properties, particularly the interlaminar strength. This study analyses the fatigue behaviour of nanoclay and multiwalled carbon nanotubes enhanced glass/epoxy laminates. The matrix used was the epoxy resin Biresin CR120, combined with the hardener CH120-3. Multiwalled carbon nanotubes (MWCNTs) 98% and organo-montmorillonite Nanomer I30 E nanoclay were used. Composites plates were manufactured by moulding in vacuum. Fatigue tests were performed under constant amplitude, both under tension–tension and three points bending loadings. The fatigue results show that composites with small amounts of nanoparticles addition into the matrix have bending fatigue strength similar to the obtained for the neat glass fibre reinforced epoxy matrix composite. On the contrary, for higher percentages of nanoclays or carbon nanotubes addition the fatigue strength tend to decrease caused by poor nanoparticles dispersion and formation of agglomerates. Tensile fatigue strength is only marginally affected by the addition of small amount of particles. The fatigue ratio in tensio –tension loading increases with the addition of nanoclays and multi-walled carbon nanotubes, suggesting that both nanoparticles can act as barriers to fatigue crack propagation.
id RCAP_07bab3085799cf69f584936856200b6c
oai_identifier_str oai:repositorio.ipv.pt:10400.19/2812
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticlesGlass fibresParticle-reinforcementNano-structuresFatigueNanocompositesNanoparticle reinforcement of the matrix in laminates has been recently explored to improve mechanical properties, particularly the interlaminar strength. This study analyses the fatigue behaviour of nanoclay and multiwalled carbon nanotubes enhanced glass/epoxy laminates. The matrix used was the epoxy resin Biresin CR120, combined with the hardener CH120-3. Multiwalled carbon nanotubes (MWCNTs) 98% and organo-montmorillonite Nanomer I30 E nanoclay were used. Composites plates were manufactured by moulding in vacuum. Fatigue tests were performed under constant amplitude, both under tension–tension and three points bending loadings. The fatigue results show that composites with small amounts of nanoparticles addition into the matrix have bending fatigue strength similar to the obtained for the neat glass fibre reinforced epoxy matrix composite. On the contrary, for higher percentages of nanoclays or carbon nanotubes addition the fatigue strength tend to decrease caused by poor nanoparticles dispersion and formation of agglomerates. Tensile fatigue strength is only marginally affected by the addition of small amount of particles. The fatigue ratio in tensio –tension loading increases with the addition of nanoclays and multi-walled carbon nanotubes, suggesting that both nanoparticles can act as barriers to fatigue crack propagation.ElsevierRepositório Científico do Instituto Politécnico de ViseuBorrego, L.P.Costa, J.D.M.Ferreira, J.A.M.Silva, H.2015-05-20T10:03:45Z20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.19/2812engmetadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-01-16T15:26:04Zoai:repositorio.ipv.pt:10400.19/2812Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:41:56.159937Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles
title Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles
spellingShingle Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles
Borrego, L.P.
Glass fibres
Particle-reinforcement
Nano-structures
Fatigue
Nanocomposites
title_short Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles
title_full Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles
title_fullStr Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles
title_full_unstemmed Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles
title_sort Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles
author Borrego, L.P.
author_facet Borrego, L.P.
Costa, J.D.M.
Ferreira, J.A.M.
Silva, H.
author_role author
author2 Costa, J.D.M.
Ferreira, J.A.M.
Silva, H.
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico de Viseu
dc.contributor.author.fl_str_mv Borrego, L.P.
Costa, J.D.M.
Ferreira, J.A.M.
Silva, H.
dc.subject.por.fl_str_mv Glass fibres
Particle-reinforcement
Nano-structures
Fatigue
Nanocomposites
topic Glass fibres
Particle-reinforcement
Nano-structures
Fatigue
Nanocomposites
description Nanoparticle reinforcement of the matrix in laminates has been recently explored to improve mechanical properties, particularly the interlaminar strength. This study analyses the fatigue behaviour of nanoclay and multiwalled carbon nanotubes enhanced glass/epoxy laminates. The matrix used was the epoxy resin Biresin CR120, combined with the hardener CH120-3. Multiwalled carbon nanotubes (MWCNTs) 98% and organo-montmorillonite Nanomer I30 E nanoclay were used. Composites plates were manufactured by moulding in vacuum. Fatigue tests were performed under constant amplitude, both under tension–tension and three points bending loadings. The fatigue results show that composites with small amounts of nanoparticles addition into the matrix have bending fatigue strength similar to the obtained for the neat glass fibre reinforced epoxy matrix composite. On the contrary, for higher percentages of nanoclays or carbon nanotubes addition the fatigue strength tend to decrease caused by poor nanoparticles dispersion and formation of agglomerates. Tensile fatigue strength is only marginally affected by the addition of small amount of particles. The fatigue ratio in tensio –tension loading increases with the addition of nanoclays and multi-walled carbon nanotubes, suggesting that both nanoparticles can act as barriers to fatigue crack propagation.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
2015-05-20T10:03:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.19/2812
url http://hdl.handle.net/10400.19/2812
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130885950275584