Behavioural reasoning for conditional equations

Detalhes bibliográficos
Autor(a) principal: Martins, Manuel A.
Data de Publicação: 2007
Outros Autores: Pigozzi, D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/6183
Resumo: Object-oriented (OO) programming techniques can be applied to equational specification logics by distinguishing visible data from hidden data (that is, by distinguishing the output of methods from the objects to which the methods apply), and then focusing on the behavioural equivalence of hidden data in the sense introduced by H. Reichel in 1984. Equational specification logics structured in this way are called hidden equational logics, HELs. The central problem is how to extend the specification of a given HEL to a specification of behavioural equivalence in a computationally effective way. S. Buss and G. Roşu showed in 2000 that this is not possible in general, but much work has been done on the partial specification of behavioural equivalence for a wide class of HELs. The OO connection suggests the use of coalgebraic methods, and J. Goguen and his collaborators have developed coinductive processes that depend on an appropriate choice of a cobasis, which is a special set of contexts that generates a subset of the behavioural equivalence relation. In this paper the theoretical aspects of coinduction are investigated, specifically its role as a supplement to standard equational logic for determining behavioural equivalence. Various forms of coinduction are explored. A simple characterisation is given of those HELs that are behaviourally specifiable. Those sets of conditional equations that constitute a complete, finite cobasis for a HEL are characterised in terms of the HEL's specification. Behavioural equivalence, in the form of logical equivalence, is also an important concept for single-sorted logics, for example, sentential logics such as the classical propositional logic. The paper is an application of the methods developed through the extensive work that has been done in this area on HELs, and to a broader class of logics that encompasses both sentential logics and HELs. © 2007 Cambridge University Press.
id RCAP_0add22542cb38ca9b585bb35a3db189b
oai_identifier_str oai:ria.ua.pt:10773/6183
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Behavioural reasoning for conditional equationsData structuresEquivalence classesSpecification languagesBehavioural equivalenceBehavioural reasoningHidden dataSpecification logicsObject oriented programmingObject-oriented (OO) programming techniques can be applied to equational specification logics by distinguishing visible data from hidden data (that is, by distinguishing the output of methods from the objects to which the methods apply), and then focusing on the behavioural equivalence of hidden data in the sense introduced by H. Reichel in 1984. Equational specification logics structured in this way are called hidden equational logics, HELs. The central problem is how to extend the specification of a given HEL to a specification of behavioural equivalence in a computationally effective way. S. Buss and G. Roşu showed in 2000 that this is not possible in general, but much work has been done on the partial specification of behavioural equivalence for a wide class of HELs. The OO connection suggests the use of coalgebraic methods, and J. Goguen and his collaborators have developed coinductive processes that depend on an appropriate choice of a cobasis, which is a special set of contexts that generates a subset of the behavioural equivalence relation. In this paper the theoretical aspects of coinduction are investigated, specifically its role as a supplement to standard equational logic for determining behavioural equivalence. Various forms of coinduction are explored. A simple characterisation is given of those HELs that are behaviourally specifiable. Those sets of conditional equations that constitute a complete, finite cobasis for a HEL are characterised in terms of the HEL's specification. Behavioural equivalence, in the form of logical equivalence, is also an important concept for single-sorted logics, for example, sentential logics such as the classical propositional logic. The paper is an application of the methods developed through the extensive work that has been done in this area on HELs, and to a broader class of logics that encompasses both sentential logics and HELs. © 2007 Cambridge University Press.2012-02-10T12:53:42Z2007-01-01T00:00:00Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/6183eng0960-129510.1017/S0960129507006305Martins, Manuel A.Pigozzi, D.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:06:27Zoai:ria.ua.pt:10773/6183Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:42:54.626991Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Behavioural reasoning for conditional equations
title Behavioural reasoning for conditional equations
spellingShingle Behavioural reasoning for conditional equations
Martins, Manuel A.
Data structures
Equivalence classes
Specification languages
Behavioural equivalence
Behavioural reasoning
Hidden data
Specification logics
Object oriented programming
title_short Behavioural reasoning for conditional equations
title_full Behavioural reasoning for conditional equations
title_fullStr Behavioural reasoning for conditional equations
title_full_unstemmed Behavioural reasoning for conditional equations
title_sort Behavioural reasoning for conditional equations
author Martins, Manuel A.
author_facet Martins, Manuel A.
Pigozzi, D.
author_role author
author2 Pigozzi, D.
author2_role author
dc.contributor.author.fl_str_mv Martins, Manuel A.
Pigozzi, D.
dc.subject.por.fl_str_mv Data structures
Equivalence classes
Specification languages
Behavioural equivalence
Behavioural reasoning
Hidden data
Specification logics
Object oriented programming
topic Data structures
Equivalence classes
Specification languages
Behavioural equivalence
Behavioural reasoning
Hidden data
Specification logics
Object oriented programming
description Object-oriented (OO) programming techniques can be applied to equational specification logics by distinguishing visible data from hidden data (that is, by distinguishing the output of methods from the objects to which the methods apply), and then focusing on the behavioural equivalence of hidden data in the sense introduced by H. Reichel in 1984. Equational specification logics structured in this way are called hidden equational logics, HELs. The central problem is how to extend the specification of a given HEL to a specification of behavioural equivalence in a computationally effective way. S. Buss and G. Roşu showed in 2000 that this is not possible in general, but much work has been done on the partial specification of behavioural equivalence for a wide class of HELs. The OO connection suggests the use of coalgebraic methods, and J. Goguen and his collaborators have developed coinductive processes that depend on an appropriate choice of a cobasis, which is a special set of contexts that generates a subset of the behavioural equivalence relation. In this paper the theoretical aspects of coinduction are investigated, specifically its role as a supplement to standard equational logic for determining behavioural equivalence. Various forms of coinduction are explored. A simple characterisation is given of those HELs that are behaviourally specifiable. Those sets of conditional equations that constitute a complete, finite cobasis for a HEL are characterised in terms of the HEL's specification. Behavioural equivalence, in the form of logical equivalence, is also an important concept for single-sorted logics, for example, sentential logics such as the classical propositional logic. The paper is an application of the methods developed through the extensive work that has been done in this area on HELs, and to a broader class of logics that encompasses both sentential logics and HELs. © 2007 Cambridge University Press.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01T00:00:00Z
2007
2012-02-10T12:53:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/6183
url http://hdl.handle.net/10773/6183
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0960-1295
10.1017/S0960129507006305
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137477132288000