Robust nonlinear feedback control for Rendezvous in near-circular orbits

Bibliographic Details
Main Author: Godinho, Eduardo David
Publication Date: 2019
Format: Master thesis
Language: eng
Source: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Download full: http://hdl.handle.net/10400.6/8942
Summary: The growing development of the space sector has been driving new technologies and innovative methods. One of these methods, the orbital rendezvous, has been around since the 1960s and consists of bringing together two spacecrafts, one of them is passive, named "target", and the other is active, called the "chaser". This second spacecraft, in turn, performs maneuvers with the aid of thrusters in order to reduce the relative distance between the two vehicles until it is approximately zero. Initially, this process was done manually, however, today technology has progressed such that the process can be completely autonomous. At the beginning of the automation of this space maneuver, the concern would only be to complete the mission, however, it has progressed towards improving this automation process taking into account propellant consumption and the amount of time spent to perform it. Thus, the present dissertation aims to develop and implement a robust controller, based on a Lyapunov’s approach, to show its performance, robustness, and effectiveness in an orbital rendezvous mission. By using a linear dynamic system, where the orbital eccentricity of the target is assumed to be a system uncertainty, the nonlinear controller can create a smooth trajectory so that the chaser approaches the target. The results show that this nonlinear controller can find the solution to the problem of rendezvous for short relative distances and low relative speeds as well as for large, always generating smooth paths without overshooting the target. It was also found that even by disturbing the system with uncertainty, the controller can generate a robust trajectory with great results. This type of controller for rendezvous missions, besides being robust and effective, as demonstrated in the obtained results, can generate excellent results for rendezvous between non-circular non-coplanar orbits.
id RCAP_1440008bf888ec0b883b28ec734f93d9
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/8942
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Robust nonlinear feedback control for Rendezvous in near-circular orbitsLyapunovNão-CoplanaresRendezvous EspacialRobustezDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaThe growing development of the space sector has been driving new technologies and innovative methods. One of these methods, the orbital rendezvous, has been around since the 1960s and consists of bringing together two spacecrafts, one of them is passive, named "target", and the other is active, called the "chaser". This second spacecraft, in turn, performs maneuvers with the aid of thrusters in order to reduce the relative distance between the two vehicles until it is approximately zero. Initially, this process was done manually, however, today technology has progressed such that the process can be completely autonomous. At the beginning of the automation of this space maneuver, the concern would only be to complete the mission, however, it has progressed towards improving this automation process taking into account propellant consumption and the amount of time spent to perform it. Thus, the present dissertation aims to develop and implement a robust controller, based on a Lyapunov’s approach, to show its performance, robustness, and effectiveness in an orbital rendezvous mission. By using a linear dynamic system, where the orbital eccentricity of the target is assumed to be a system uncertainty, the nonlinear controller can create a smooth trajectory so that the chaser approaches the target. The results show that this nonlinear controller can find the solution to the problem of rendezvous for short relative distances and low relative speeds as well as for large, always generating smooth paths without overshooting the target. It was also found that even by disturbing the system with uncertainty, the controller can generate a robust trajectory with great results. This type of controller for rendezvous missions, besides being robust and effective, as demonstrated in the obtained results, can generate excellent results for rendezvous between non-circular non-coplanar orbits.O crescente desenvolvimento do setor espacial tem vindo a impulsionar novas tecnologias e métodos inovadores. Um destes métodos, o rendezvous orbital, está presente desde a década de 60, e consiste em aproximar dois veículos espaciais, um deles passivo denominado de “target” e o outro ativo denominado de “chaser”. Este segundo, por sua vez, executa manobras com o auxílio de propulsores de modo a reduzir a distância relativa entre os dois veículos até que esta seja aproximadamente nula. Inicialmente, este processo era feito manualmente, no entanto, atualmente, a tecnologia progrediu de tal forma que o processo consegue ser completamente autónomo. No início da automação desta manobra espacial, a preocupação seria apenas completar a missão, contudo esta progrediu no sentido de melhorar este processo de automação tendo em conta o consumo de propelente e a quantidade de tempo gasto. Desta forma, a presente dissertação tem como objetivo desenvolver e implementar um controlador robusto, baseado numa metodologia de Lyapunov, de modo a mostrar a sua performance, robustez e eficácia numa missão de rendezvous orbital. Ao utilizar um sistema linear dinâmico em que a excentricidade da órbita do “target” se assume como uma incerteza do sistema, o controlador não-linear consegue criar uma trajetória suave, para que o “chaser” se aproxime do “target”. Os resultados obtidos demonstram que este controlador consegue encontrar a solução para o problema de rendezvous tanto para pequenas distâncias e velocidades relativas assim como para grandes, gerando sempre trajetórias suaves sem ultrapassar o “target”. Verifica-se também que, mesmo perturbando o sistema com a incerteza, o controlador consegue gerar uma trajetória robusta com ótimos resultados. Este tipo de controlador para missões de rendezvous, para além de ser robusto e eficaz, como demonstrado nos resultados obtidos, consegue gerar ótimos resultados para rendezvous entre órbitas não-coplanares nãocirculares.Bousson, KouamanauBibliorumGodinho, Eduardo David2022-11-04T01:30:20Z2019-12-182019-11-042019-12-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/8942TID:202375170enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:21Zoai:ubibliorum.ubi.pt:10400.6/8942Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:12.530614Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Robust nonlinear feedback control for Rendezvous in near-circular orbits
title Robust nonlinear feedback control for Rendezvous in near-circular orbits
spellingShingle Robust nonlinear feedback control for Rendezvous in near-circular orbits
Godinho, Eduardo David
Lyapunov
Não-Coplanares
Rendezvous Espacial
Robustez
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
title_short Robust nonlinear feedback control for Rendezvous in near-circular orbits
title_full Robust nonlinear feedback control for Rendezvous in near-circular orbits
title_fullStr Robust nonlinear feedback control for Rendezvous in near-circular orbits
title_full_unstemmed Robust nonlinear feedback control for Rendezvous in near-circular orbits
title_sort Robust nonlinear feedback control for Rendezvous in near-circular orbits
author Godinho, Eduardo David
author_facet Godinho, Eduardo David
author_role author
dc.contributor.none.fl_str_mv Bousson, Kouamana
uBibliorum
dc.contributor.author.fl_str_mv Godinho, Eduardo David
dc.subject.por.fl_str_mv Lyapunov
Não-Coplanares
Rendezvous Espacial
Robustez
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
topic Lyapunov
Não-Coplanares
Rendezvous Espacial
Robustez
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
description The growing development of the space sector has been driving new technologies and innovative methods. One of these methods, the orbital rendezvous, has been around since the 1960s and consists of bringing together two spacecrafts, one of them is passive, named "target", and the other is active, called the "chaser". This second spacecraft, in turn, performs maneuvers with the aid of thrusters in order to reduce the relative distance between the two vehicles until it is approximately zero. Initially, this process was done manually, however, today technology has progressed such that the process can be completely autonomous. At the beginning of the automation of this space maneuver, the concern would only be to complete the mission, however, it has progressed towards improving this automation process taking into account propellant consumption and the amount of time spent to perform it. Thus, the present dissertation aims to develop and implement a robust controller, based on a Lyapunov’s approach, to show its performance, robustness, and effectiveness in an orbital rendezvous mission. By using a linear dynamic system, where the orbital eccentricity of the target is assumed to be a system uncertainty, the nonlinear controller can create a smooth trajectory so that the chaser approaches the target. The results show that this nonlinear controller can find the solution to the problem of rendezvous for short relative distances and low relative speeds as well as for large, always generating smooth paths without overshooting the target. It was also found that even by disturbing the system with uncertainty, the controller can generate a robust trajectory with great results. This type of controller for rendezvous missions, besides being robust and effective, as demonstrated in the obtained results, can generate excellent results for rendezvous between non-circular non-coplanar orbits.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-18
2019-11-04
2019-12-18T00:00:00Z
2022-11-04T01:30:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/8942
TID:202375170
url http://hdl.handle.net/10400.6/8942
identifier_str_mv TID:202375170
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136384676528128