The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabrication

Detalhes bibliográficos
Autor(a) principal: Costa, Sidonie F.
Data de Publicação: 2021
Outros Autores: Duarte, F. M., Covas, J. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/72505
Resumo: Additive Manufacturing Techniques such as Fused Filament Fabrication (FFF) produce 3D parts with complex geometries directly from a computer model without the need of using molds and tools, by gradually depositing material(s), usually in layers. Due to the rapid growth of these techniques, researchers have been increasingly interested in the availability of strategies, models or data that may assist process optimization. In fact, 3D printed parts often exhibit limited mechanical performance, which is usually the result of poor bonding between adjacent filaments. In turn, the latter is influenced by the temperature field history during deposition. This study aims at evaluating the influence of the phase change from the melt to the solid state undergone by semi-crystalline polymers such as Polylactic Acid (PLA), on the heat transfer during the deposition stage. The energy equation considering solidification is solved analytically and then inserted into a MatLab<sup>®</sup> code to model cooling in FFF. The deposition and cooling of simple geometries is studied first, in order to assess the differences in cooling of amorphous and semi-crystalline polymers. Acrylonitrile Butadiene Styrene (ABS) was taken as representing an amorphous material. Then, the deposition and cooling of a realistic 3D part is investigated, and the influence of the build orientation is discussed.
id RCAP_360282c9ec69a984e54d027bf5e1f4aa
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/72505
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabricationFused Filament Fabrication (FFF)Phase changeModellingHeat transferScience & TechnologyAdditive Manufacturing Techniques such as Fused Filament Fabrication (FFF) produce 3D parts with complex geometries directly from a computer model without the need of using molds and tools, by gradually depositing material(s), usually in layers. Due to the rapid growth of these techniques, researchers have been increasingly interested in the availability of strategies, models or data that may assist process optimization. In fact, 3D printed parts often exhibit limited mechanical performance, which is usually the result of poor bonding between adjacent filaments. In turn, the latter is influenced by the temperature field history during deposition. This study aims at evaluating the influence of the phase change from the melt to the solid state undergone by semi-crystalline polymers such as Polylactic Acid (PLA), on the heat transfer during the deposition stage. The energy equation considering solidification is solved analytically and then inserted into a MatLab<sup>®</sup> code to model cooling in FFF. The deposition and cooling of simple geometries is studied first, in order to assess the differences in cooling of amorphous and semi-crystalline polymers. Acrylonitrile Butadiene Styrene (ABS) was taken as representing an amorphous material. Then, the deposition and cooling of a realistic 3D part is investigated, and the influence of the build orientation is discussed.This work has been partially supported by national funds through FCT- Fundação para a Ciência e Tecnologia through project UIDB/04728/2020. Partial support for this research has been provided by the Search-ON2: Revitalization of HPC infrastructure of Uminho, (NORTE-07-0162- FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2-O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoCosta, Sidonie F.Duarte, F. M.Covas, J. A.2021-02-012021-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/72505engCosta, S.F.; Duarte, F.M.; Covas, J.A. The Effect of a Phase Change on the Temperature Evolution during the Deposition Stage in Fused Filament Fabrication. Computers 2021, 10, 19. https://doi.org/10.3390/computers100200192073-431X2073-431X10.3390/computers10020019https://www.mdpi.com/2073-431X/10/2/19info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:48:29Zoai:repositorium.sdum.uminho.pt:1822/72505Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:46:45.070083Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabrication
title The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabrication
spellingShingle The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabrication
Costa, Sidonie F.
Fused Filament Fabrication (FFF)
Phase change
Modelling
Heat transfer
Science & Technology
title_short The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabrication
title_full The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabrication
title_fullStr The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabrication
title_full_unstemmed The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabrication
title_sort The effect of a phase change on the temperature evolution during the deposition stage in fused filament fabrication
author Costa, Sidonie F.
author_facet Costa, Sidonie F.
Duarte, F. M.
Covas, J. A.
author_role author
author2 Duarte, F. M.
Covas, J. A.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, Sidonie F.
Duarte, F. M.
Covas, J. A.
dc.subject.por.fl_str_mv Fused Filament Fabrication (FFF)
Phase change
Modelling
Heat transfer
Science & Technology
topic Fused Filament Fabrication (FFF)
Phase change
Modelling
Heat transfer
Science & Technology
description Additive Manufacturing Techniques such as Fused Filament Fabrication (FFF) produce 3D parts with complex geometries directly from a computer model without the need of using molds and tools, by gradually depositing material(s), usually in layers. Due to the rapid growth of these techniques, researchers have been increasingly interested in the availability of strategies, models or data that may assist process optimization. In fact, 3D printed parts often exhibit limited mechanical performance, which is usually the result of poor bonding between adjacent filaments. In turn, the latter is influenced by the temperature field history during deposition. This study aims at evaluating the influence of the phase change from the melt to the solid state undergone by semi-crystalline polymers such as Polylactic Acid (PLA), on the heat transfer during the deposition stage. The energy equation considering solidification is solved analytically and then inserted into a MatLab<sup>®</sup> code to model cooling in FFF. The deposition and cooling of simple geometries is studied first, in order to assess the differences in cooling of amorphous and semi-crystalline polymers. Acrylonitrile Butadiene Styrene (ABS) was taken as representing an amorphous material. Then, the deposition and cooling of a realistic 3D part is investigated, and the influence of the build orientation is discussed.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-01
2021-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/72505
url http://hdl.handle.net/1822/72505
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Costa, S.F.; Duarte, F.M.; Covas, J.A. The Effect of a Phase Change on the Temperature Evolution during the Deposition Stage in Fused Filament Fabrication. Computers 2021, 10, 19. https://doi.org/10.3390/computers10020019
2073-431X
2073-431X
10.3390/computers10020019
https://www.mdpi.com/2073-431X/10/2/19
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133037295828992