Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study

Detalhes bibliográficos
Autor(a) principal: Melo, W
Data de Publicação: 2020
Outros Autores: Pinho, J, Iglesias, I, Bio, A, P. Avilez-Valente, Vieira, J, Bastos, L, Fernando Veloso Gomes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/149977
Resumo: The understanding and anticipating of climate change impacts is one of the greatest challenges for humanity. It is already known that, until the end of the 21st century, the mean sea level (MSL) will rise at a global scale, but its effects at the local scale need to be further analyzed. In this context, a numerical modelling tool and a methodological approach for the river Minho estuary (NW of the Iberian Peninsula) are presented, to predict possible consequences of local MSL rise, considering the greenhouse emission scenarios RCP 4.5 and RCP 8.5. Hydrodynamic and morphodynamic impacts were analyzed considering several driving factors, such as tides, sea level rise, storm surge, wave set-up, and different river flood peak discharges, taking into account their probabilities of occurrence. The model was calibrated using in-situ data and a data assimilation tool, the OpenDA, which automates this process, allowing to reach reliable results in a considerably short time when compared with traditional techniques. The results forecast that the predicted MSL rise will reduce the flow velocity magnitude and the sediment transport into the coastal platform but will aggravate the inundation risks along the estuarine banks. In the worst scenario (RCP 8.5) the water level near the river mouth of the estuary is expected to rise 0.20 m for 50 years return period ocean water rising, and 0.60 m for 100 years return period. It was also possible to identify that floods are the most important driver for the sediment transport along the estuary, while the tide effect in the morphodynamics is restricted to the downstream estuarine region. This work demonstrated the importance of the numerical modelling tools to better understand the effects of climate change at local scales through the representation of the estuarine hydrodynamic pattern evolution for future climate scenarios.
id RCAP_3a328f6a383fa8b97aa4eacefa6951fd
oai_identifier_str oai:repositorio-aberto.up.pt:10216/149977
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case StudyThe understanding and anticipating of climate change impacts is one of the greatest challenges for humanity. It is already known that, until the end of the 21st century, the mean sea level (MSL) will rise at a global scale, but its effects at the local scale need to be further analyzed. In this context, a numerical modelling tool and a methodological approach for the river Minho estuary (NW of the Iberian Peninsula) are presented, to predict possible consequences of local MSL rise, considering the greenhouse emission scenarios RCP 4.5 and RCP 8.5. Hydrodynamic and morphodynamic impacts were analyzed considering several driving factors, such as tides, sea level rise, storm surge, wave set-up, and different river flood peak discharges, taking into account their probabilities of occurrence. The model was calibrated using in-situ data and a data assimilation tool, the OpenDA, which automates this process, allowing to reach reliable results in a considerably short time when compared with traditional techniques. The results forecast that the predicted MSL rise will reduce the flow velocity magnitude and the sediment transport into the coastal platform but will aggravate the inundation risks along the estuarine banks. In the worst scenario (RCP 8.5) the water level near the river mouth of the estuary is expected to rise 0.20 m for 50 years return period ocean water rising, and 0.60 m for 100 years return period. It was also possible to identify that floods are the most important driver for the sediment transport along the estuary, while the tide effect in the morphodynamics is restricted to the downstream estuarine region. This work demonstrated the importance of the numerical modelling tools to better understand the effects of climate change at local scales through the representation of the estuarine hydrodynamic pattern evolution for future climate scenarios.20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/149977eng10.3390/jmse8060441Melo, WPinho, JIglesias, IBio, AP. Avilez-ValenteVieira, JBastos, LFernando Veloso Gomesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-26T13:40:52ZPortal AgregadorONG
dc.title.none.fl_str_mv Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study
title Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study
spellingShingle Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study
Melo, W
title_short Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study
title_full Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study
title_fullStr Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study
title_full_unstemmed Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study
title_sort Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study
author Melo, W
author_facet Melo, W
Pinho, J
Iglesias, I
Bio, A
P. Avilez-Valente
Vieira, J
Bastos, L
Fernando Veloso Gomes
author_role author
author2 Pinho, J
Iglesias, I
Bio, A
P. Avilez-Valente
Vieira, J
Bastos, L
Fernando Veloso Gomes
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Melo, W
Pinho, J
Iglesias, I
Bio, A
P. Avilez-Valente
Vieira, J
Bastos, L
Fernando Veloso Gomes
description The understanding and anticipating of climate change impacts is one of the greatest challenges for humanity. It is already known that, until the end of the 21st century, the mean sea level (MSL) will rise at a global scale, but its effects at the local scale need to be further analyzed. In this context, a numerical modelling tool and a methodological approach for the river Minho estuary (NW of the Iberian Peninsula) are presented, to predict possible consequences of local MSL rise, considering the greenhouse emission scenarios RCP 4.5 and RCP 8.5. Hydrodynamic and morphodynamic impacts were analyzed considering several driving factors, such as tides, sea level rise, storm surge, wave set-up, and different river flood peak discharges, taking into account their probabilities of occurrence. The model was calibrated using in-situ data and a data assimilation tool, the OpenDA, which automates this process, allowing to reach reliable results in a considerably short time when compared with traditional techniques. The results forecast that the predicted MSL rise will reduce the flow velocity magnitude and the sediment transport into the coastal platform but will aggravate the inundation risks along the estuarine banks. In the worst scenario (RCP 8.5) the water level near the river mouth of the estuary is expected to rise 0.20 m for 50 years return period ocean water rising, and 0.60 m for 100 years return period. It was also possible to identify that floods are the most important driver for the sediment transport along the estuary, while the tide effect in the morphodynamics is restricted to the downstream estuarine region. This work demonstrated the importance of the numerical modelling tools to better understand the effects of climate change at local scales through the representation of the estuarine hydrodynamic pattern evolution for future climate scenarios.
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/149977
url https://hdl.handle.net/10216/149977
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/jmse8060441
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777304098340601857