Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics

Detalhes bibliográficos
Autor(a) principal: Peixoto, Francisco
Data de Publicação: 2003
Outros Autores: Vicente, Joaquim A. F., Madeira, Vítor M. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/8147
https://doi.org/10.1002/jbt.10077
Resumo: The herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) was evaluated for its effects on bioenergetic activities of potato tuber mitochondria to elucidate putative mechanisms of action and to compare its toxicity with 2-chlorobenzoic acid. Dicamba (4 mumol/mg mitochondrial protein) induces a limited stimulation of state 4 respiration of ca. 10%, and the above concentrations significantly inhibit respiration, whereas 2-chlorobenzoic acid maximally stimulates state 4 respiration (ca. 50%) at about 25 mumol/mg mitochondrial protein. As opposed to these limited effects on state 4 respiration, transmembrane electrical potential is strongly decreased by dicamba and 2-chlorobenzoic acid. Dicamba (25 mumol/mg mitochondrial protein) collapses, almost completely, Deltapsi; similar concentrations of 2-chlorobenzoic acid promote Deltapsi drops of about 50%. Proton permeabilization partially contributes to Deltapsi collapse since swelling in K-acetate medium is stimulated, with dicamba promoting a stronger stimulation. The Deltapsi decrease induced by dicamba is not exclusively the result of a stimulation on the proton leak through the mitochondrial inner membrane, since there was no correspondence between the Deltapsi decrease and the change on the O2 consumption on state 4 respiration; on the contrary, for concentrations above 8 mumol/mg mitochondrial protein a strong inhibition was observed. Both compounds inhibit the activity of respiratory complexes II and III but complex IV is not significantly affected. Complex I seems to be sensitive to these xenobiotics. In conclusion, dicamba is a stronger mitochondrial respiratory chain inhibitor and uncoupler as compared to 2-chlorobenzoic acid. Apparently, the differences in the lipophilicity are related to the different activities on mitochondrial bioenergetics. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:185-192, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10077
id RCAP_3e09841d388320202615c02f7a1bf8db
oai_identifier_str oai:estudogeral.uc.pt:10316/8147
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergeticsThe herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) was evaluated for its effects on bioenergetic activities of potato tuber mitochondria to elucidate putative mechanisms of action and to compare its toxicity with 2-chlorobenzoic acid. Dicamba (4 mumol/mg mitochondrial protein) induces a limited stimulation of state 4 respiration of ca. 10%, and the above concentrations significantly inhibit respiration, whereas 2-chlorobenzoic acid maximally stimulates state 4 respiration (ca. 50%) at about 25 mumol/mg mitochondrial protein. As opposed to these limited effects on state 4 respiration, transmembrane electrical potential is strongly decreased by dicamba and 2-chlorobenzoic acid. Dicamba (25 mumol/mg mitochondrial protein) collapses, almost completely, Deltapsi; similar concentrations of 2-chlorobenzoic acid promote Deltapsi drops of about 50%. Proton permeabilization partially contributes to Deltapsi collapse since swelling in K-acetate medium is stimulated, with dicamba promoting a stronger stimulation. The Deltapsi decrease induced by dicamba is not exclusively the result of a stimulation on the proton leak through the mitochondrial inner membrane, since there was no correspondence between the Deltapsi decrease and the change on the O2 consumption on state 4 respiration; on the contrary, for concentrations above 8 mumol/mg mitochondrial protein a strong inhibition was observed. Both compounds inhibit the activity of respiratory complexes II and III but complex IV is not significantly affected. Complex I seems to be sensitive to these xenobiotics. In conclusion, dicamba is a stronger mitochondrial respiratory chain inhibitor and uncoupler as compared to 2-chlorobenzoic acid. Apparently, the differences in the lipophilicity are related to the different activities on mitochondrial bioenergetics. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:185-192, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.100772003info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/8147http://hdl.handle.net/10316/8147https://doi.org/10.1002/jbt.10077engJournal of Biochemical and Molecular Toxicology. 17:3 (2003) 185-192Peixoto, FranciscoVicente, Joaquim A. F.Madeira, Vítor M. C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2019-06-02T09:08:46Zoai:estudogeral.uc.pt:10316/8147Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:55:51.677872Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics
title Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics
spellingShingle Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics
Peixoto, Francisco
title_short Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics
title_full Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics
title_fullStr Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics
title_full_unstemmed Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics
title_sort Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics
author Peixoto, Francisco
author_facet Peixoto, Francisco
Vicente, Joaquim A. F.
Madeira, Vítor M. C.
author_role author
author2 Vicente, Joaquim A. F.
Madeira, Vítor M. C.
author2_role author
author
dc.contributor.author.fl_str_mv Peixoto, Francisco
Vicente, Joaquim A. F.
Madeira, Vítor M. C.
description The herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) was evaluated for its effects on bioenergetic activities of potato tuber mitochondria to elucidate putative mechanisms of action and to compare its toxicity with 2-chlorobenzoic acid. Dicamba (4 mumol/mg mitochondrial protein) induces a limited stimulation of state 4 respiration of ca. 10%, and the above concentrations significantly inhibit respiration, whereas 2-chlorobenzoic acid maximally stimulates state 4 respiration (ca. 50%) at about 25 mumol/mg mitochondrial protein. As opposed to these limited effects on state 4 respiration, transmembrane electrical potential is strongly decreased by dicamba and 2-chlorobenzoic acid. Dicamba (25 mumol/mg mitochondrial protein) collapses, almost completely, Deltapsi; similar concentrations of 2-chlorobenzoic acid promote Deltapsi drops of about 50%. Proton permeabilization partially contributes to Deltapsi collapse since swelling in K-acetate medium is stimulated, with dicamba promoting a stronger stimulation. The Deltapsi decrease induced by dicamba is not exclusively the result of a stimulation on the proton leak through the mitochondrial inner membrane, since there was no correspondence between the Deltapsi decrease and the change on the O2 consumption on state 4 respiration; on the contrary, for concentrations above 8 mumol/mg mitochondrial protein a strong inhibition was observed. Both compounds inhibit the activity of respiratory complexes II and III but complex IV is not significantly affected. Complex I seems to be sensitive to these xenobiotics. In conclusion, dicamba is a stronger mitochondrial respiratory chain inhibitor and uncoupler as compared to 2-chlorobenzoic acid. Apparently, the differences in the lipophilicity are related to the different activities on mitochondrial bioenergetics. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:185-192, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10077
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/8147
http://hdl.handle.net/10316/8147
https://doi.org/10.1002/jbt.10077
url http://hdl.handle.net/10316/8147
https://doi.org/10.1002/jbt.10077
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Biochemical and Molecular Toxicology. 17:3 (2003) 185-192
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133844829372416