Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics

Detalhes bibliográficos
Autor(a) principal: Fernandes, Eduarda
Data de Publicação: 2018
Outros Autores: Soares, Telma B, Gonçalves, Hugo, Lúcio, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/65853
Resumo: The goal of this study is to provide tools to minimize trial-and-error in the development of novel lipid-based nanotherapeutics, in favor of a rational design process. For this purpose, we present case-study examples of biophysical assays that help addressing issues of lipid-based nanotherapeutics' profiling and assist in the design of lipid nanocarriers for therapeutic usage. The assays presented are rooted in spectroscopic methods (steady-state and time-resolved fluorescence; UV-Vis derivative spectroscopy; fluorescence anisotropy and fluorescence lifetime image microscopy) and allow accessing physical-chemical interactions between drugs and lipid nanocarriers, as well as studying interactions between lipid-based nanotherapeutics and membranes and/or proteins, as this is a key factor in predicting their therapeutic and off target effects. Derivative spectroscopy revealed Naproxen's high distribution (LogD ≈ 3) in different lipid-based nanocarriers (micelles and unilamellar or multilamellar vesicles) confirming the adequacy of such systems for encapsulating this anti-inflammatory drug. Fluorescence quenching studies revealed that the anti-inflammatory drugs Acemetacin and Indomethacin can reach an inner location at the lipid nanocarrier while being anchored with its carboxylic moiety at the polar headgroup. The least observed quenching effect suggested that Tolmetin is probably located at the polar headgroup region of the lipid nanocarriers and this superficial location may translate in a fast drug release from the nanocarriers. Fluorescent anisotropy measurements indicated that the drugs deeply buried within the lipid nanocarrier where the ones that had a greater fluidizing effect which can also translate in a faster drug release. The drug binding strength to serum albumin was also compared for a free drug (Clonixin) or for the same drug after encapsulation in a lipid nanocarrier DSPC:DODAP (2:1). Under both conditions there is a strong binding to serum albumin, at one binding site, suggesting the need to produce a stealth nanosystem. Finally the cellular uptake of lipid nanocarriers loaded with Daunorubicin was investigated in cancer cells using fluorescence lifetime imaging microscopy. From the images obtained it was possible to conclude that even at short incubation times (15 min) there was a distribution of the drug in the cytoplasm, whereas for longer incubation periods (4 h) the drug has reached the nucleus.
id RCAP_43861bee867852af65d91165956e88e4
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/65853
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeuticsnanotherapeutics' characterizationderivative spectroscopyfluorescence quenchingsteady-state anisotropyHSA bindingfluorescence lifetime imaging microscopyScience & TechnologyThe goal of this study is to provide tools to minimize trial-and-error in the development of novel lipid-based nanotherapeutics, in favor of a rational design process. For this purpose, we present case-study examples of biophysical assays that help addressing issues of lipid-based nanotherapeutics' profiling and assist in the design of lipid nanocarriers for therapeutic usage. The assays presented are rooted in spectroscopic methods (steady-state and time-resolved fluorescence; UV-Vis derivative spectroscopy; fluorescence anisotropy and fluorescence lifetime image microscopy) and allow accessing physical-chemical interactions between drugs and lipid nanocarriers, as well as studying interactions between lipid-based nanotherapeutics and membranes and/or proteins, as this is a key factor in predicting their therapeutic and off target effects. Derivative spectroscopy revealed Naproxen's high distribution (LogD ≈ 3) in different lipid-based nanocarriers (micelles and unilamellar or multilamellar vesicles) confirming the adequacy of such systems for encapsulating this anti-inflammatory drug. Fluorescence quenching studies revealed that the anti-inflammatory drugs Acemetacin and Indomethacin can reach an inner location at the lipid nanocarrier while being anchored with its carboxylic moiety at the polar headgroup. The least observed quenching effect suggested that Tolmetin is probably located at the polar headgroup region of the lipid nanocarriers and this superficial location may translate in a fast drug release from the nanocarriers. Fluorescent anisotropy measurements indicated that the drugs deeply buried within the lipid nanocarrier where the ones that had a greater fluidizing effect which can also translate in a faster drug release. The drug binding strength to serum albumin was also compared for a free drug (Clonixin) or for the same drug after encapsulation in a lipid nanocarrier DSPC:DODAP (2:1). Under both conditions there is a strong binding to serum albumin, at one binding site, suggesting the need to produce a stealth nanosystem. Finally the cellular uptake of lipid nanocarriers loaded with Daunorubicin was investigated in cancer cells using fluorescence lifetime imaging microscopy. From the images obtained it was possible to conclude that even at short incubation times (15 min) there was a distribution of the drug in the cytoplasm, whereas for longer incubation periods (4 h) the drug has reached the nucleus.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013 and in the ambit of the project IF/00498/2012.Frontiers MediaUniversidade do MinhoFernandes, EduardaSoares, Telma BGonçalves, HugoLúcio, M.20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/65853engFernandes E, Soares TB, Gonçalves H and Lúcio M (2018) Spectroscopic Studies as a Toolbox for Biophysical and Chemical Characterization of Lipid-Based Nanotherapeutics. Front. Chem. 6:323. doi: 10.3389/fchem.2018.003232296-264610.3389/fchem.2018.00323https://www.frontiersin.org/articles/10.3389/fchem.2018.00323/fullinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:29:36Zoai:repositorium.sdum.uminho.pt:1822/65853Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:24:36.784220Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics
title Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics
spellingShingle Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics
Fernandes, Eduarda
nanotherapeutics' characterization
derivative spectroscopy
fluorescence quenching
steady-state anisotropy
HSA binding
fluorescence lifetime imaging microscopy
Science & Technology
title_short Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics
title_full Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics
title_fullStr Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics
title_full_unstemmed Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics
title_sort Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics
author Fernandes, Eduarda
author_facet Fernandes, Eduarda
Soares, Telma B
Gonçalves, Hugo
Lúcio, M.
author_role author
author2 Soares, Telma B
Gonçalves, Hugo
Lúcio, M.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Fernandes, Eduarda
Soares, Telma B
Gonçalves, Hugo
Lúcio, M.
dc.subject.por.fl_str_mv nanotherapeutics' characterization
derivative spectroscopy
fluorescence quenching
steady-state anisotropy
HSA binding
fluorescence lifetime imaging microscopy
Science & Technology
topic nanotherapeutics' characterization
derivative spectroscopy
fluorescence quenching
steady-state anisotropy
HSA binding
fluorescence lifetime imaging microscopy
Science & Technology
description The goal of this study is to provide tools to minimize trial-and-error in the development of novel lipid-based nanotherapeutics, in favor of a rational design process. For this purpose, we present case-study examples of biophysical assays that help addressing issues of lipid-based nanotherapeutics' profiling and assist in the design of lipid nanocarriers for therapeutic usage. The assays presented are rooted in spectroscopic methods (steady-state and time-resolved fluorescence; UV-Vis derivative spectroscopy; fluorescence anisotropy and fluorescence lifetime image microscopy) and allow accessing physical-chemical interactions between drugs and lipid nanocarriers, as well as studying interactions between lipid-based nanotherapeutics and membranes and/or proteins, as this is a key factor in predicting their therapeutic and off target effects. Derivative spectroscopy revealed Naproxen's high distribution (LogD ≈ 3) in different lipid-based nanocarriers (micelles and unilamellar or multilamellar vesicles) confirming the adequacy of such systems for encapsulating this anti-inflammatory drug. Fluorescence quenching studies revealed that the anti-inflammatory drugs Acemetacin and Indomethacin can reach an inner location at the lipid nanocarrier while being anchored with its carboxylic moiety at the polar headgroup. The least observed quenching effect suggested that Tolmetin is probably located at the polar headgroup region of the lipid nanocarriers and this superficial location may translate in a fast drug release from the nanocarriers. Fluorescent anisotropy measurements indicated that the drugs deeply buried within the lipid nanocarrier where the ones that had a greater fluidizing effect which can also translate in a faster drug release. The drug binding strength to serum albumin was also compared for a free drug (Clonixin) or for the same drug after encapsulation in a lipid nanocarrier DSPC:DODAP (2:1). Under both conditions there is a strong binding to serum albumin, at one binding site, suggesting the need to produce a stealth nanosystem. Finally the cellular uptake of lipid nanocarriers loaded with Daunorubicin was investigated in cancer cells using fluorescence lifetime imaging microscopy. From the images obtained it was possible to conclude that even at short incubation times (15 min) there was a distribution of the drug in the cytoplasm, whereas for longer incubation periods (4 h) the drug has reached the nucleus.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/65853
url http://hdl.handle.net/1822/65853
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Fernandes E, Soares TB, Gonçalves H and Lúcio M (2018) Spectroscopic Studies as a Toolbox for Biophysical and Chemical Characterization of Lipid-Based Nanotherapeutics. Front. Chem. 6:323. doi: 10.3389/fchem.2018.00323
2296-2646
10.3389/fchem.2018.00323
https://www.frontiersin.org/articles/10.3389/fchem.2018.00323/full
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132726296576000