Design of a Variable Camber Flap for Air Cargo Challenge Aircraft

Detalhes bibliográficos
Autor(a) principal: Soares, Ricardo Manuel Vitorino
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/11696
Resumo: The need for a more competitive Air cargo challenge (ACC) aircraft led the pursuit for a more aerodynamic efficient wing. This work details the various steps taken in the design of a gapless flap system with the actuation mechanism inside for a clean surface. Multiple flexible joint specimens designs were manufactured and tested with the help of a special constructed test bench to assert the required torque to bend certain degrees. The goal is to serve as a flexible skin in the flap hinge line. A system that rotates around an axis on the lower wing skin means that the upper skin changes in length, arising the need for a flexible material. A RTV silicone rubber was chosen to close the upper surface flap gap. A novel test apparatus was devised to determine the silicone Young’s Modulus and Poisson’s ratio so the sheet could be sized. An adhesion test was also performed using a suitable bonding agent to verify if it had the capability of performing the task at hand. The full range of hinge acting moments was determined. Aerodynamic hinge moment was simulated with XFOIL software, while the elastomer’s was calculated with the found properties and trigonometry. Due to the elastomeric nature of silicone, air pressure effects were evaluated using XFOIL Cp curves to calculate resulting loads and a subsequent FEM analyse with Ansys Mechanical module predicted the outer plane deformations. A program in Matlab was written to help dimension the actuation system. Optimization was achieved by comparing the servo motor available hinge torque with the resisting moments sum (aerodynamic, elastomer and flexible skin joint). With all the described methodology, a final design was purposed based on the central wing panel of ACC 2019 edition model. To not only validate the concept at hand but also the employed methodology, a small (250 mm span) section was manufactured using conventional 2 parts hollow moulded manufacturing process. For the novel concept, a silicone sheet bonding procedure was planned and required a special mould for the effect. After de­moulded, the section was trimmed and the servo motor was installed to check the concept functionality. A final experiment using a modified bench test was realized to compare the projected hinge moments with the built section one’s.
id RCAP_466216d146ae89e87b359b0abb85a0f7
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/11696
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Design of a Variable Camber Flap for Air Cargo Challenge AircraftCasca de Asa FlexívelDispositivo FlapPerfil Asa LimpoDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaThe need for a more competitive Air cargo challenge (ACC) aircraft led the pursuit for a more aerodynamic efficient wing. This work details the various steps taken in the design of a gapless flap system with the actuation mechanism inside for a clean surface. Multiple flexible joint specimens designs were manufactured and tested with the help of a special constructed test bench to assert the required torque to bend certain degrees. The goal is to serve as a flexible skin in the flap hinge line. A system that rotates around an axis on the lower wing skin means that the upper skin changes in length, arising the need for a flexible material. A RTV silicone rubber was chosen to close the upper surface flap gap. A novel test apparatus was devised to determine the silicone Young’s Modulus and Poisson’s ratio so the sheet could be sized. An adhesion test was also performed using a suitable bonding agent to verify if it had the capability of performing the task at hand. The full range of hinge acting moments was determined. Aerodynamic hinge moment was simulated with XFOIL software, while the elastomer’s was calculated with the found properties and trigonometry. Due to the elastomeric nature of silicone, air pressure effects were evaluated using XFOIL Cp curves to calculate resulting loads and a subsequent FEM analyse with Ansys Mechanical module predicted the outer plane deformations. A program in Matlab was written to help dimension the actuation system. Optimization was achieved by comparing the servo motor available hinge torque with the resisting moments sum (aerodynamic, elastomer and flexible skin joint). With all the described methodology, a final design was purposed based on the central wing panel of ACC 2019 edition model. To not only validate the concept at hand but also the employed methodology, a small (250 mm span) section was manufactured using conventional 2 parts hollow moulded manufacturing process. For the novel concept, a silicone sheet bonding procedure was planned and required a special mould for the effect. After de­moulded, the section was trimmed and the servo motor was installed to check the concept functionality. A final experiment using a modified bench test was realized to compare the projected hinge moments with the built section one’s.A necessidade de uma aeronave mais competitiva para as edições do Air Cargo Challenge levou à procura de uma asa mais eficiente aerodinamicamente. Esta dissertação descreve os varios passos que levaram ao desenho de um flap sem fenda, com o mecanismo de atuação imbutido, para garantir uma superficie limpa. Multiplos espécimes com junta flexível foram produzidos e testados com recurso a uma bancada de testes construída para o efeito, de forma a calcular­se o binário necessário para determinada deflexão. As juntas têm o objetivo de servirem como cascas flexíveis na dobradiça do flap. Um dispositivo que revolve em torno de um eixo localizado no intradorso faz com que a casca do extradorso altere em comprimento, surgindo a necessidade de um material elástico. Um silicone RTV foi escolhido para fechar a fenda do flap. Um novo método experimetal foi pensado para determinar o módulo de Young e o coeficiente de Poisson de forma a dimensionar a folha de silicone. Um teste foi realizado para aferir a capacidade de adesão de um agente selante. A totalidade dos momentos que actuam sobre a dobradiça foram calculados. O momento aerodinâmico foi determinado com o recurso ao programa XFOIL, enquanto o do elastômero foi calculado com base nas suas propriedades e em trigonometria. Devido há natureza elastica do silicone, os efeitos resultantes da pressão do ar foram avaliados recurrendo às curvas de CP do XFOIL para calcular as cargas resultantes. Posteriormente uma análise MEF com o software comercial Ansys previu as deformações perpendiculares ao plano. Para dimensionar o sistema de actuação, um program foi escrito no Matlab. Optimização foi conseguida através da comparação do binário que o servo motor enacte na dobradiça com o somatório dos momentos resistentes (aerodinâmico, elastômero e junta flexível). Com toda a metodologia acima descrita, um desenho final, baseado no painel central da asa do modelo do ACC2019, foi apresentado. De forma a validar o conceito apresentado e os métodos utilizados, uma pequena secção (250 mm envergadura) foi fabricada com recurso a processos de manufactura de partes moldadas. Para o novo conceito, um processo de adesão para a folha de silicone foi pensado e este requeriu um molde próprio para o efeito. Depois de desmoldada, a secção foi trimada e o servo motor foi instalado para verificar a funcionalidade. Um último teste foi efectuado, realizando modificações à bancada de teste construída previamente, com a finalidade de comparar os momentos projectados com os do produto final.Gamboa, Pedro VieirauBibliorumSoares, Ricardo Manuel Vitorino2022-01-12T15:15:46Z2020-12-102020-11-042020-12-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/11696TID:202847411enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:54:23Zoai:ubibliorum.ubi.pt:10400.6/11696Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:51:25.525710Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Design of a Variable Camber Flap for Air Cargo Challenge Aircraft
title Design of a Variable Camber Flap for Air Cargo Challenge Aircraft
spellingShingle Design of a Variable Camber Flap for Air Cargo Challenge Aircraft
Soares, Ricardo Manuel Vitorino
Casca de Asa Flexível
Dispositivo Flap
Perfil Asa Limpo
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
title_short Design of a Variable Camber Flap for Air Cargo Challenge Aircraft
title_full Design of a Variable Camber Flap for Air Cargo Challenge Aircraft
title_fullStr Design of a Variable Camber Flap for Air Cargo Challenge Aircraft
title_full_unstemmed Design of a Variable Camber Flap for Air Cargo Challenge Aircraft
title_sort Design of a Variable Camber Flap for Air Cargo Challenge Aircraft
author Soares, Ricardo Manuel Vitorino
author_facet Soares, Ricardo Manuel Vitorino
author_role author
dc.contributor.none.fl_str_mv Gamboa, Pedro Vieira
uBibliorum
dc.contributor.author.fl_str_mv Soares, Ricardo Manuel Vitorino
dc.subject.por.fl_str_mv Casca de Asa Flexível
Dispositivo Flap
Perfil Asa Limpo
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
topic Casca de Asa Flexível
Dispositivo Flap
Perfil Asa Limpo
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
description The need for a more competitive Air cargo challenge (ACC) aircraft led the pursuit for a more aerodynamic efficient wing. This work details the various steps taken in the design of a gapless flap system with the actuation mechanism inside for a clean surface. Multiple flexible joint specimens designs were manufactured and tested with the help of a special constructed test bench to assert the required torque to bend certain degrees. The goal is to serve as a flexible skin in the flap hinge line. A system that rotates around an axis on the lower wing skin means that the upper skin changes in length, arising the need for a flexible material. A RTV silicone rubber was chosen to close the upper surface flap gap. A novel test apparatus was devised to determine the silicone Young’s Modulus and Poisson’s ratio so the sheet could be sized. An adhesion test was also performed using a suitable bonding agent to verify if it had the capability of performing the task at hand. The full range of hinge acting moments was determined. Aerodynamic hinge moment was simulated with XFOIL software, while the elastomer’s was calculated with the found properties and trigonometry. Due to the elastomeric nature of silicone, air pressure effects were evaluated using XFOIL Cp curves to calculate resulting loads and a subsequent FEM analyse with Ansys Mechanical module predicted the outer plane deformations. A program in Matlab was written to help dimension the actuation system. Optimization was achieved by comparing the servo motor available hinge torque with the resisting moments sum (aerodynamic, elastomer and flexible skin joint). With all the described methodology, a final design was purposed based on the central wing panel of ACC 2019 edition model. To not only validate the concept at hand but also the employed methodology, a small (250 mm span) section was manufactured using conventional 2 parts hollow moulded manufacturing process. For the novel concept, a silicone sheet bonding procedure was planned and required a special mould for the effect. After de­moulded, the section was trimmed and the servo motor was installed to check the concept functionality. A final experiment using a modified bench test was realized to compare the projected hinge moments with the built section one’s.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10
2020-11-04
2020-12-10T00:00:00Z
2022-01-12T15:15:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/11696
TID:202847411
url http://hdl.handle.net/10400.6/11696
identifier_str_mv TID:202847411
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136403448135680