Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications

Detalhes bibliográficos
Autor(a) principal: Sousa, J.
Data de Publicação: 2014
Outros Autores: Correia, J. R., Cabral-Fonseca, S., Diogo, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.lnec.pt:8080/jspui/handle/123456789/1006270
Resumo: This paper presents a literature review and results of an experimental study about the effects of thermal cycles on the physical and mechanical properties of pultruded glass fibre reinforced polymer (GFRP) profiles used in civil engineering structural applications. The GFRP profiles used in this study present similar fibre architecture, differing only in their matrix nature: unsaturated polyester and vinylester. Small-scale coupons obtained from both types of GFRP profiles were exposed to a Mediterranean range of thermal variations (-5 °C to 40 °C) for up to 190 cycles in a dry condition. The effects of such exposure on the physical and mechanical response of the GFRP materials were assessed and compared using the following experimental techniques: (a) dynamic mechanical analyses (DMA) to assess the viscoelastic behaviour; (b) tensile, flexural and interlaminar shear tests, to evaluate the mechanical properties; and (c) scanning electron microscopy (SEM), to monitor the potential changes in the microstructure due to the degradation (if any) caused by the thermal cycles, as well as the possible changes into the main mechanisms of fracture. After exposure to thermal cycles, the viscoelastic behaviour of the GFRP profiles presented only slight changes, indicating no significant degradation, neither in the matrix structure nor at the fibre-matrix interphase. In terms of mechanical properties, both types of GFRP materials suffered slight changes regarding tensile and interlaminar shear properties. Flexural properties were more affected, particularly the flexural modulus, especially in the first cycles, as degradation tended to stabilize for increasing cycles. The GFRP profile made of vinylester resin presented better overall performance than the one made of polyester, especially regarding the tensile properties. SEM observations of the surfaces of fracture of mechanically tested pultruded specimens showed two main mechanisms of crack propagation: cohesive rupture (matrix cracking), where the crack propagates inside the matrix, and adhesive rupture (fibre-matrix debonding), where the crack propagates at the interface fibre-matrix. Degradation of the polyester matrix caused by the thermal cycles is evidenced by extensive matrix microcracking and increased fibre-matrix debonding. The vinylester matrix resists better to such degradation as fibre-matrix debonding occurs in less extent, and matrix microcracking is scarcely present.
id RCAP_54d35d4f1c993525a448c0887ed7a955
oai_identifier_str oai:localhost:123456789/1006270
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applicationsGfrpDurabilityThermal cyclesVinylesterPolyesterExperimental testsThis paper presents a literature review and results of an experimental study about the effects of thermal cycles on the physical and mechanical properties of pultruded glass fibre reinforced polymer (GFRP) profiles used in civil engineering structural applications. The GFRP profiles used in this study present similar fibre architecture, differing only in their matrix nature: unsaturated polyester and vinylester. Small-scale coupons obtained from both types of GFRP profiles were exposed to a Mediterranean range of thermal variations (-5 °C to 40 °C) for up to 190 cycles in a dry condition. The effects of such exposure on the physical and mechanical response of the GFRP materials were assessed and compared using the following experimental techniques: (a) dynamic mechanical analyses (DMA) to assess the viscoelastic behaviour; (b) tensile, flexural and interlaminar shear tests, to evaluate the mechanical properties; and (c) scanning electron microscopy (SEM), to monitor the potential changes in the microstructure due to the degradation (if any) caused by the thermal cycles, as well as the possible changes into the main mechanisms of fracture. After exposure to thermal cycles, the viscoelastic behaviour of the GFRP profiles presented only slight changes, indicating no significant degradation, neither in the matrix structure nor at the fibre-matrix interphase. In terms of mechanical properties, both types of GFRP materials suffered slight changes regarding tensile and interlaminar shear properties. Flexural properties were more affected, particularly the flexural modulus, especially in the first cycles, as degradation tended to stabilize for increasing cycles. The GFRP profile made of vinylester resin presented better overall performance than the one made of polyester, especially regarding the tensile properties. SEM observations of the surfaces of fracture of mechanically tested pultruded specimens showed two main mechanisms of crack propagation: cohesive rupture (matrix cracking), where the crack propagates inside the matrix, and adhesive rupture (fibre-matrix debonding), where the crack propagates at the interface fibre-matrix. Degradation of the polyester matrix caused by the thermal cycles is evidenced by extensive matrix microcracking and increased fibre-matrix debonding. The vinylester matrix resists better to such degradation as fibre-matrix debonding occurs in less extent, and matrix microcracking is scarcely present.Elsevier2014-07-07T15:53:04Z2014-10-20T16:45:04Z2017-04-13T12:10:14Z2014-01-14T00:00:00Z2014-01-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.lnec.pt:8080/jspui/handle/123456789/1006270engSousa, J.Correia, J. R.Cabral-Fonseca, S.Diogo, A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-13T03:07:00Zoai:localhost:123456789/1006270Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:40:11.379444Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications
title Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications
spellingShingle Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications
Sousa, J.
Gfrp
Durability
Thermal cycles
Vinylester
Polyester
Experimental tests
title_short Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications
title_full Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications
title_fullStr Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications
title_full_unstemmed Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications
title_sort Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications
author Sousa, J.
author_facet Sousa, J.
Correia, J. R.
Cabral-Fonseca, S.
Diogo, A.
author_role author
author2 Correia, J. R.
Cabral-Fonseca, S.
Diogo, A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Sousa, J.
Correia, J. R.
Cabral-Fonseca, S.
Diogo, A.
dc.subject.por.fl_str_mv Gfrp
Durability
Thermal cycles
Vinylester
Polyester
Experimental tests
topic Gfrp
Durability
Thermal cycles
Vinylester
Polyester
Experimental tests
description This paper presents a literature review and results of an experimental study about the effects of thermal cycles on the physical and mechanical properties of pultruded glass fibre reinforced polymer (GFRP) profiles used in civil engineering structural applications. The GFRP profiles used in this study present similar fibre architecture, differing only in their matrix nature: unsaturated polyester and vinylester. Small-scale coupons obtained from both types of GFRP profiles were exposed to a Mediterranean range of thermal variations (-5 °C to 40 °C) for up to 190 cycles in a dry condition. The effects of such exposure on the physical and mechanical response of the GFRP materials were assessed and compared using the following experimental techniques: (a) dynamic mechanical analyses (DMA) to assess the viscoelastic behaviour; (b) tensile, flexural and interlaminar shear tests, to evaluate the mechanical properties; and (c) scanning electron microscopy (SEM), to monitor the potential changes in the microstructure due to the degradation (if any) caused by the thermal cycles, as well as the possible changes into the main mechanisms of fracture. After exposure to thermal cycles, the viscoelastic behaviour of the GFRP profiles presented only slight changes, indicating no significant degradation, neither in the matrix structure nor at the fibre-matrix interphase. In terms of mechanical properties, both types of GFRP materials suffered slight changes regarding tensile and interlaminar shear properties. Flexural properties were more affected, particularly the flexural modulus, especially in the first cycles, as degradation tended to stabilize for increasing cycles. The GFRP profile made of vinylester resin presented better overall performance than the one made of polyester, especially regarding the tensile properties. SEM observations of the surfaces of fracture of mechanically tested pultruded specimens showed two main mechanisms of crack propagation: cohesive rupture (matrix cracking), where the crack propagates inside the matrix, and adhesive rupture (fibre-matrix debonding), where the crack propagates at the interface fibre-matrix. Degradation of the polyester matrix caused by the thermal cycles is evidenced by extensive matrix microcracking and increased fibre-matrix debonding. The vinylester matrix resists better to such degradation as fibre-matrix debonding occurs in less extent, and matrix microcracking is scarcely present.
publishDate 2014
dc.date.none.fl_str_mv 2014-07-07T15:53:04Z
2014-10-20T16:45:04Z
2014-01-14T00:00:00Z
2014-01-14
2017-04-13T12:10:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.lnec.pt:8080/jspui/handle/123456789/1006270
url http://repositorio.lnec.pt:8080/jspui/handle/123456789/1006270
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136890922729472