Quantum-noise based true random number generation

Detalhes bibliográficos
Autor(a) principal: Ferreira, Maurício de Jesus
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/33737
Resumo: Quantum Random Number Generators (QRNGs) promise information-theoretic security by exploring the intrinsic probabilistic properties of quantum mechanics. In practice, their security frequently relies on a number of assumptions over physical devices. In this thesis, a randomness generation framework that explores the amplitude quadrature fluctuations of a vacuum state was analyzed. It employs a homodyne measurement scheme, which can be implemented with low-cost components, and shows potential for high performance with remarkable stability. A mathematical description of all necessary stages was provided as security proof, considering the quantization noise introduced by the analog-to-digital converter. The impact of experimental limitations, such as the digitizer resolution or the presence of excess noise due to an unbalanced detection, was characterized. Moreover, we propose a framework to estimate the excess entropy introduced by an unbalanced detection, and its high impact within the Shannon entropy model was experimentally verified. Furthermore, a real-time dedicated QRNG scheme was implemented and validated. The variance characterization curve of the homodyne detector was measured, and the quantum fluctuations were determined to be preponderant for an impinging power PLO < 45.7mW. By estimating the worst-case min-entropy conditioned on the electronic noise, approximately 8.39 true random bits can be extracted from each sample, yielding a maximum generation rate of 8.23 Gbps. With a lengthcompatible Toeplitz-hashing algorithm, these can be extracted at 75 Mbps with an upper security bound of 2−105, which illustrates the quality of this implementation. Moreover, the generation scheme was validated and verified to pass all the statistical tests of the NIST, DieHarder, and TestU01’s SmallCrush batteries, as well as most of TestU01’s Crush evaluations. Finally, we propose a framework for time-interleaving the entropy source within a classical communication channel, which removes the need for a dedicated generation device. After assessing the conditions where quantum noise is dominant, support for generation rates up to 1.3 Gbps was observed. The random bitstream was subjected to the NIST randomness test suite and consistently passed all evaluations. Moreover, a clean quadrature phase shift keying constellation was recovered, which supports the multi-purpose function of the scheme.
id RCAP_59a572d20d49a84e97f3b5d6db04a9ce
oai_identifier_str oai:ria.ua.pt:10773/33737
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Quantum-noise based true random number generationQuantum random number generationQuadrature amplitude fluctuationsVacuum stateRandomness extractionHomodyne detectionQuantum Random Number Generators (QRNGs) promise information-theoretic security by exploring the intrinsic probabilistic properties of quantum mechanics. In practice, their security frequently relies on a number of assumptions over physical devices. In this thesis, a randomness generation framework that explores the amplitude quadrature fluctuations of a vacuum state was analyzed. It employs a homodyne measurement scheme, which can be implemented with low-cost components, and shows potential for high performance with remarkable stability. A mathematical description of all necessary stages was provided as security proof, considering the quantization noise introduced by the analog-to-digital converter. The impact of experimental limitations, such as the digitizer resolution or the presence of excess noise due to an unbalanced detection, was characterized. Moreover, we propose a framework to estimate the excess entropy introduced by an unbalanced detection, and its high impact within the Shannon entropy model was experimentally verified. Furthermore, a real-time dedicated QRNG scheme was implemented and validated. The variance characterization curve of the homodyne detector was measured, and the quantum fluctuations were determined to be preponderant for an impinging power PLO < 45.7mW. By estimating the worst-case min-entropy conditioned on the electronic noise, approximately 8.39 true random bits can be extracted from each sample, yielding a maximum generation rate of 8.23 Gbps. With a lengthcompatible Toeplitz-hashing algorithm, these can be extracted at 75 Mbps with an upper security bound of 2−105, which illustrates the quality of this implementation. Moreover, the generation scheme was validated and verified to pass all the statistical tests of the NIST, DieHarder, and TestU01’s SmallCrush batteries, as well as most of TestU01’s Crush evaluations. Finally, we propose a framework for time-interleaving the entropy source within a classical communication channel, which removes the need for a dedicated generation device. After assessing the conditions where quantum noise is dominant, support for generation rates up to 1.3 Gbps was observed. The random bitstream was subjected to the NIST randomness test suite and consistently passed all evaluations. Moreover, a clean quadrature phase shift keying constellation was recovered, which supports the multi-purpose function of the scheme.Geradores quânticos de números aleatórios (QRNGs) prometem sistemas informação-teoricamente seguros explorando as propriedades intrinsecamente probabilísticas da mecânica quântica. No entanto, experimentalmente, um conjunto de pressupostos é tipicamente imposto sobre os dispositivos experimentais. Nesta dissertação, analisou-se uma abordagem para geração de números aleatórios que explora as flutuações de amplitude em quadratura de um estado vácuo. Para tal, recorre-se a um esquema de deteção homodina que permite um elevado desempenho e estabilidade, requerendo apenas dispositivos de baixo custo. Um modelo matemático das diferentes etapas do gerador foi desenvolvido de forma a fornecer uma prova de segurança, e contabilizou-se o ruído de discretização introduzido pelo conversor analógico-digital. Adicionalmente, caracterizou-se o impacto de imperfeições experimentais como a resolução do conversor analógico-digital e a presença de ruído em excesso como consequência de uma deteção não balanceada. Uma abordagem para estimar esta contribuição no modelo de entropia de Shannon foi também proposta e experimentalmente verificada. Adicionalmente, uma implementação em tempo-real foi caracterizada. A curva de caracterização do detetor homodino foi experimentalmente verificada, e uma preponderância de ruído quântico observado para potências óticas inferiores a 45.7mW. Através de uma estimativa da min-entropy condicionada ao ruído eletrónico, aproximadamente 8.39 bits por medição podem ser extraídos, o que corresponde a uma taxa de geração máxima de 8.23 Gbps. Estes podem ser extraídos a uma taxa de 75 Mbps com um parâmetro de segurança de 2−105, ilustrativo da qualidade desta implementação, através de um algoritmo eficiente de multiplicação de matrizes de Toeplitz. Posteriormente, o esquema foi validado, passando todos os testes estatísticos das baterias NIST, DieHarder, e SmallCrush, assim como a maioria das avaliações contidas na bateria Crush. Por último, foi proposta uma abordagem para integrar esta fonte de entropia num canal de comunicação clássico, removendo desta forma a necessidade de uma implementação dedicada. Após avaliação das condições de preponderância do ruído quântico, foram observadas taxas de geração até 1.3 Gbps. Os números obtidos foram também submetidos à bateria de testes do NIST, passando consistentemente todas as avaliações. Adicionalmente, a constelação de modulação de amplitude em quadratura obtida viabiliza a operação multifuncional do sistema.2022-04-26T14:27:42Z2021-12-10T00:00:00Z2021-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33737engFerreira, Maurício de Jesusinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:04:54Zoai:ria.ua.pt:10773/33737Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:05.362645Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Quantum-noise based true random number generation
title Quantum-noise based true random number generation
spellingShingle Quantum-noise based true random number generation
Ferreira, Maurício de Jesus
Quantum random number generation
Quadrature amplitude fluctuations
Vacuum state
Randomness extraction
Homodyne detection
title_short Quantum-noise based true random number generation
title_full Quantum-noise based true random number generation
title_fullStr Quantum-noise based true random number generation
title_full_unstemmed Quantum-noise based true random number generation
title_sort Quantum-noise based true random number generation
author Ferreira, Maurício de Jesus
author_facet Ferreira, Maurício de Jesus
author_role author
dc.contributor.author.fl_str_mv Ferreira, Maurício de Jesus
dc.subject.por.fl_str_mv Quantum random number generation
Quadrature amplitude fluctuations
Vacuum state
Randomness extraction
Homodyne detection
topic Quantum random number generation
Quadrature amplitude fluctuations
Vacuum state
Randomness extraction
Homodyne detection
description Quantum Random Number Generators (QRNGs) promise information-theoretic security by exploring the intrinsic probabilistic properties of quantum mechanics. In practice, their security frequently relies on a number of assumptions over physical devices. In this thesis, a randomness generation framework that explores the amplitude quadrature fluctuations of a vacuum state was analyzed. It employs a homodyne measurement scheme, which can be implemented with low-cost components, and shows potential for high performance with remarkable stability. A mathematical description of all necessary stages was provided as security proof, considering the quantization noise introduced by the analog-to-digital converter. The impact of experimental limitations, such as the digitizer resolution or the presence of excess noise due to an unbalanced detection, was characterized. Moreover, we propose a framework to estimate the excess entropy introduced by an unbalanced detection, and its high impact within the Shannon entropy model was experimentally verified. Furthermore, a real-time dedicated QRNG scheme was implemented and validated. The variance characterization curve of the homodyne detector was measured, and the quantum fluctuations were determined to be preponderant for an impinging power PLO < 45.7mW. By estimating the worst-case min-entropy conditioned on the electronic noise, approximately 8.39 true random bits can be extracted from each sample, yielding a maximum generation rate of 8.23 Gbps. With a lengthcompatible Toeplitz-hashing algorithm, these can be extracted at 75 Mbps with an upper security bound of 2−105, which illustrates the quality of this implementation. Moreover, the generation scheme was validated and verified to pass all the statistical tests of the NIST, DieHarder, and TestU01’s SmallCrush batteries, as well as most of TestU01’s Crush evaluations. Finally, we propose a framework for time-interleaving the entropy source within a classical communication channel, which removes the need for a dedicated generation device. After assessing the conditions where quantum noise is dominant, support for generation rates up to 1.3 Gbps was observed. The random bitstream was subjected to the NIST randomness test suite and consistently passed all evaluations. Moreover, a clean quadrature phase shift keying constellation was recovered, which supports the multi-purpose function of the scheme.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-10T00:00:00Z
2021-12-10
2022-04-26T14:27:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33737
url http://hdl.handle.net/10773/33737
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137706378264576