Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineering

Detalhes bibliográficos
Autor(a) principal: Fernandes, Cristiana Barbosa Lopes
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/33108
Resumo: The main objective of the present work consists of the optimization of the production of three-dimensional electro-responsive carbon-reinforced hydrogels, to study their cytocompatibility with neural stem cells (NSCs) for neural tissue engineering. For that matter, initially vertically aligned carbon nanotubes (VA-CNTs) with two different patterns were prepared by thermal chemical vapor deposition (T-CVD): (1) VA-CNTs dense forest and (1) VA-CNTs micropillars. Furthermore, the substrates previously described were studied after acetone vapor treatment, resulting in a cellular and “flower-like” pattern morphology, respectively. Structural characterization of the respective samples was made using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and the measurement of the water contact angle (WCA). The integration with gelatinmethacryloyl (GelMA) -based hydrogels were explored in the different studied samples. The influence of the different VA-CNTs prepared patterns was studied by the evaluation of the cell behavior with resort to NSCs. By immunocytochemical staining, cell viability assays and SEM, it was observed the cells affinity for the diverse carbon structures, in comparison to the silicon (Si) substrate. Besides, it was also verified the suitability of the VA-CNTs platforms for cell viability and proliferation. The collapsed VA-CNTs substrate made evident the tendency for cell differentiation into neurons, possibly due to their superficial roughness at the nanoscale, which favors this biological mechanism. The results obtained demonstrated that VA-CNTs based structures favors the proliferation and differentiation of NSCs, making them promising as future threedimensional electroresponsive structures with excellent performances for neural tissue engineering.
id RCAP_5e755b35e60d2a51dfa14730b9fb9659
oai_identifier_str oai:ria.ua.pt:10773/33108
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineeringVertically aligned carbon nanotubesMicropillarsDensificationHydrogelsNeural stem cellsEletro-responsiveSpinal cord injuryThe main objective of the present work consists of the optimization of the production of three-dimensional electro-responsive carbon-reinforced hydrogels, to study their cytocompatibility with neural stem cells (NSCs) for neural tissue engineering. For that matter, initially vertically aligned carbon nanotubes (VA-CNTs) with two different patterns were prepared by thermal chemical vapor deposition (T-CVD): (1) VA-CNTs dense forest and (1) VA-CNTs micropillars. Furthermore, the substrates previously described were studied after acetone vapor treatment, resulting in a cellular and “flower-like” pattern morphology, respectively. Structural characterization of the respective samples was made using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and the measurement of the water contact angle (WCA). The integration with gelatinmethacryloyl (GelMA) -based hydrogels were explored in the different studied samples. The influence of the different VA-CNTs prepared patterns was studied by the evaluation of the cell behavior with resort to NSCs. By immunocytochemical staining, cell viability assays and SEM, it was observed the cells affinity for the diverse carbon structures, in comparison to the silicon (Si) substrate. Besides, it was also verified the suitability of the VA-CNTs platforms for cell viability and proliferation. The collapsed VA-CNTs substrate made evident the tendency for cell differentiation into neurons, possibly due to their superficial roughness at the nanoscale, which favors this biological mechanism. The results obtained demonstrated that VA-CNTs based structures favors the proliferation and differentiation of NSCs, making them promising as future threedimensional electroresponsive structures with excellent performances for neural tissue engineering.O principal objetivo do presente trabalho constituiu na otimização da produção de estruturas tridimensionais eletro-estimuláveis à base de nanoestruturas de carbono/hidrogel, estudando a sua citocompatibilidade com células estaminais para engenharia de tecido neuronal. Nesse sentido foram primeiramente preparados dois padrões de nanotubos de carbono verticalmente alinhados (VA-CNTs) por deposição química em fase vapor (T-CVD): (1) floresta densa de VA-CNTs e (2) micropilares de VA-CNTs. Além disso, foram também estudados os substratos anteriormente descritos após tratamento por vapor de acetona, resultando na formação de VA-CNTs e micropadrões colapsados, apresentando uma morfologia com um padrão celular e uma semelhante a uma "flor", respetivamente. As respetivas amostras foram caracterizadas por microscopia eletrónica de varrimento (SEM), de transmissão (TEM) e foi medido o ângulo de contacto com a água (WCA). As diferentes amostras estudadas foram exploradas na integração com hidrogéis à base de gelatina metacrilada (GelMA). A influência dos diferentes padrões de VA-CNTs preparados foi estudada através da avaliação do comportamento celular com o recurso a células estaminais neurais (NSCs). Por ensaios de imunocitoquímica, viabilidade celular e SEM, foi observada a afinidade das células para com as diversas estruturas de carbono, em comparação com o substrato de silício (Si). Para além disso foi também verificada a aptidão das diversas estruturas baseadas em VA-CNTs como plataformas para proliferação e diferenciação de NSCs. Os substratos de VA-CNTs colapsados evidenciaram uma propensão para induzir a diferenciação celular em neurónios, possivelmente devido à sua rugosidade superficial à nanoescala favorecer este mecanismo biológico. Os resultados obtidos demonstraram que as estruturas baseadas em VA-CNTs favorecem a proliferação e diferenciação das células estaminais neurais, podendo futuramente ser aplicados como estruturas tridimensionais eletroestimuláveis com elevado desempenho para engenharia de tecido neural.2022-02-08T09:14:50Z2021-12-09T00:00:00Z2021-12-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33108engFernandes, Cristiana Barbosa Lopesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:03:44Zoai:ria.ua.pt:10773/33108Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:37.466652Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineering
title Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineering
spellingShingle Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineering
Fernandes, Cristiana Barbosa Lopes
Vertically aligned carbon nanotubes
Micropillars
Densification
Hydrogels
Neural stem cells
Eletro-responsive
Spinal cord injury
title_short Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineering
title_full Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineering
title_fullStr Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineering
title_full_unstemmed Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineering
title_sort Three-dimensional electro-responsive carbonreinforced hydrogels for neural tissue engineering
author Fernandes, Cristiana Barbosa Lopes
author_facet Fernandes, Cristiana Barbosa Lopes
author_role author
dc.contributor.author.fl_str_mv Fernandes, Cristiana Barbosa Lopes
dc.subject.por.fl_str_mv Vertically aligned carbon nanotubes
Micropillars
Densification
Hydrogels
Neural stem cells
Eletro-responsive
Spinal cord injury
topic Vertically aligned carbon nanotubes
Micropillars
Densification
Hydrogels
Neural stem cells
Eletro-responsive
Spinal cord injury
description The main objective of the present work consists of the optimization of the production of three-dimensional electro-responsive carbon-reinforced hydrogels, to study their cytocompatibility with neural stem cells (NSCs) for neural tissue engineering. For that matter, initially vertically aligned carbon nanotubes (VA-CNTs) with two different patterns were prepared by thermal chemical vapor deposition (T-CVD): (1) VA-CNTs dense forest and (1) VA-CNTs micropillars. Furthermore, the substrates previously described were studied after acetone vapor treatment, resulting in a cellular and “flower-like” pattern morphology, respectively. Structural characterization of the respective samples was made using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and the measurement of the water contact angle (WCA). The integration with gelatinmethacryloyl (GelMA) -based hydrogels were explored in the different studied samples. The influence of the different VA-CNTs prepared patterns was studied by the evaluation of the cell behavior with resort to NSCs. By immunocytochemical staining, cell viability assays and SEM, it was observed the cells affinity for the diverse carbon structures, in comparison to the silicon (Si) substrate. Besides, it was also verified the suitability of the VA-CNTs platforms for cell viability and proliferation. The collapsed VA-CNTs substrate made evident the tendency for cell differentiation into neurons, possibly due to their superficial roughness at the nanoscale, which favors this biological mechanism. The results obtained demonstrated that VA-CNTs based structures favors the proliferation and differentiation of NSCs, making them promising as future threedimensional electroresponsive structures with excellent performances for neural tissue engineering.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-09T00:00:00Z
2021-12-09
2022-02-08T09:14:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33108
url http://hdl.handle.net/10773/33108
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137701255970816