Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior

Detalhes bibliográficos
Autor(a) principal: Boesel, L. F.
Data de Publicação: 2006
Outros Autores: Azevedo, Helena S., Reis, R. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/20153
Resumo: Hydrophilic, partially degradable, and bioactive cements (HDBCs) are starch-containing cements intended to degrade partially in the human body and, in so doing, allow for bone ingrowth inside the pores formed during degradation. Therefore, the study of degradation and bioactivity behavior was performed to assess the suitability of the current HDBCs formulations to achieve those aims. The degradation profile of HDBCs was studied under different conditions, including incubation in phosphate-buffered saline (PBS) and PBS supplemented with R-amylase at different concentrations. Thermostable R-amylase was also added to some formulations to allow control of the degradation rate and its extent. In a second stage the simultaneous phenomena of enzymatic degradation and bioactivity (both in vitro) was studied. We observed that the degradation of starch present in HDBCs can be easily controlled by the amount of R-amylase added to the cement and high values of degradation may be achieved if high enough quantities of enzyme are incorporated. However, the maximum degradation extent is much more dependent on the total amount of starch present in the formulation than on the amount of enzyme added to it: for full pore connectivity, the amount of starch should be higher than the percolation threshold for a 3D specimen. Nonetheless, calcium phosphate was able to nucleate and spread in inner pores of the cement, formed due to degradation, if they were interconnected. For a more thorough covering of the pores with calcium phosphates the amount of starch present in HDBCs should be increased to be higher than the percolation threshold.
id RCAP_88888686e411d4026ce2545e4e92e180
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/20153
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behaviorScience & TechnologyHydrophilic, partially degradable, and bioactive cements (HDBCs) are starch-containing cements intended to degrade partially in the human body and, in so doing, allow for bone ingrowth inside the pores formed during degradation. Therefore, the study of degradation and bioactivity behavior was performed to assess the suitability of the current HDBCs formulations to achieve those aims. The degradation profile of HDBCs was studied under different conditions, including incubation in phosphate-buffered saline (PBS) and PBS supplemented with R-amylase at different concentrations. Thermostable R-amylase was also added to some formulations to allow control of the degradation rate and its extent. In a second stage the simultaneous phenomena of enzymatic degradation and bioactivity (both in vitro) was studied. We observed that the degradation of starch present in HDBCs can be easily controlled by the amount of R-amylase added to the cement and high values of degradation may be achieved if high enough quantities of enzyme are incorporated. However, the maximum degradation extent is much more dependent on the total amount of starch present in the formulation than on the amount of enzyme added to it: for full pore connectivity, the amount of starch should be higher than the percolation threshold for a 3D specimen. Nonetheless, calcium phosphate was able to nucleate and spread in inner pores of the cement, formed due to degradation, if they were interconnected. For a more thorough covering of the pores with calcium phosphates the amount of starch present in HDBCs should be increased to be higher than the percolation threshold.American Chemical SocietyUniversidade do MinhoBoesel, L. F.Azevedo, Helena S.Reis, R. L.2006-092006-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20153eng1525-779710.1021/bm060387j16961323info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:18:21Zoai:repositorium.sdum.uminho.pt:1822/20153Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:11:09.770983Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior
title Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior
spellingShingle Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior
Boesel, L. F.
Science & Technology
title_short Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior
title_full Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior
title_fullStr Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior
title_full_unstemmed Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior
title_sort Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior
author Boesel, L. F.
author_facet Boesel, L. F.
Azevedo, Helena S.
Reis, R. L.
author_role author
author2 Azevedo, Helena S.
Reis, R. L.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Boesel, L. F.
Azevedo, Helena S.
Reis, R. L.
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description Hydrophilic, partially degradable, and bioactive cements (HDBCs) are starch-containing cements intended to degrade partially in the human body and, in so doing, allow for bone ingrowth inside the pores formed during degradation. Therefore, the study of degradation and bioactivity behavior was performed to assess the suitability of the current HDBCs formulations to achieve those aims. The degradation profile of HDBCs was studied under different conditions, including incubation in phosphate-buffered saline (PBS) and PBS supplemented with R-amylase at different concentrations. Thermostable R-amylase was also added to some formulations to allow control of the degradation rate and its extent. In a second stage the simultaneous phenomena of enzymatic degradation and bioactivity (both in vitro) was studied. We observed that the degradation of starch present in HDBCs can be easily controlled by the amount of R-amylase added to the cement and high values of degradation may be achieved if high enough quantities of enzyme are incorporated. However, the maximum degradation extent is much more dependent on the total amount of starch present in the formulation than on the amount of enzyme added to it: for full pore connectivity, the amount of starch should be higher than the percolation threshold for a 3D specimen. Nonetheless, calcium phosphate was able to nucleate and spread in inner pores of the cement, formed due to degradation, if they were interconnected. For a more thorough covering of the pores with calcium phosphates the amount of starch present in HDBCs should be increased to be higher than the percolation threshold.
publishDate 2006
dc.date.none.fl_str_mv 2006-09
2006-09-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/20153
url http://hdl.handle.net/1822/20153
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1525-7797
10.1021/bm060387j
16961323
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132542777950208