Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes

Detalhes bibliográficos
Autor(a) principal: Gouveia, P José
Data de Publicação: 2017
Outros Autores: Rosa, S., Ricotti, L., Abecasis, B., Almeida, H. V., Monteiro, L. R., Nunes, J., Carvalho, F. Sofia, Serra, M., Luchkin, S., Kholkin, A. Leonidovitch, Alves, P. Marques, Oliveira, P. Jorge, Carvalho, R., Menciassi, A., Neves, R. Pires das, Ferreira, L. Silva
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/92388
https://doi.org/10.1016/j.biomaterials.2017.05.048
Resumo: The use of engineered cardiac tissue for high-throughput drug screening/toxicology assessment remains largely unexplored. Here we propose a scaffold that mimics aspects of cardiac extracellular matrix while preserving the contractility of cardiomyocytes. The scaffold is based on a poly(caprolactone) (PCL) nanofilm with magnetic properties (MNF, standing for magnetic nanofilm) coated with a layer of piezoelectric (PIEZO) microfibers of poly(vinylidene fluoride-trifluoroethylene) (MNF+PIEZO). The nanofilm creates a flexible support for cell contraction and the aligned PIEZO microfibers deposited on top of the nanofilm creates conditions for cell alignment and electrical stimulation of the seeded cells. Our results indicate that MNF+PIEZO scaffold promotes rat and human cardiac cell attachment and alignment, maintains the ratio of cell populations overtime, promotes cell-cell communication and metabolic maturation, and preserves cardiomyocyte (CM) contractility for at least 12 days. The engineered cardiac construct showed high toxicity against doxorubicin, a cardiotoxic molecule, and responded to compounds that modulate CM contraction such as epinephrine, propranolol and heptanol.
id RCAP_8eaf83c2ad8ceecb05d9bde09641859f
oai_identifier_str oai:estudogeral.uc.pt:10316/92388
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytesCardiac tissue engineering; Cardiotoxicity; Electrospun fibers; Nanofilms; Piezoelectric materialsAnimalsAnti-Arrhythmia AgentsCell CommunicationCells, CulturedCoculture TechniquesDoxorubicinDrug Evaluation, PreclinicalElectric StimulationExtracellular MatrixHumansHydrocarbons, FluorinatedMagnetic PhenomenaMyocardial ContractionMyocytes, CardiacNanostructuresPolyestersRatsRats, WistarTime FactorsTissue EngineeringTissue ScaffoldsVasoconstrictor AgentsVinyl CompoundsThe use of engineered cardiac tissue for high-throughput drug screening/toxicology assessment remains largely unexplored. Here we propose a scaffold that mimics aspects of cardiac extracellular matrix while preserving the contractility of cardiomyocytes. The scaffold is based on a poly(caprolactone) (PCL) nanofilm with magnetic properties (MNF, standing for magnetic nanofilm) coated with a layer of piezoelectric (PIEZO) microfibers of poly(vinylidene fluoride-trifluoroethylene) (MNF+PIEZO). The nanofilm creates a flexible support for cell contraction and the aligned PIEZO microfibers deposited on top of the nanofilm creates conditions for cell alignment and electrical stimulation of the seeded cells. Our results indicate that MNF+PIEZO scaffold promotes rat and human cardiac cell attachment and alignment, maintains the ratio of cell populations overtime, promotes cell-cell communication and metabolic maturation, and preserves cardiomyocyte (CM) contractility for at least 12 days. The engineered cardiac construct showed high toxicity against doxorubicin, a cardiotoxic molecule, and responded to compounds that modulate CM contraction such as epinephrine, propranolol and heptanol.This work was supported by funds from FEDER through COMPETE program and Fundação para a Ciência e a Tecnologia (FCT) (EXPL/DTP-FTO/0570/2012, MITPTB/ ECE/0013/2013 to S. R. and L.F., and PTDC/SAU-ENB/113696/2009 to R.P.N.; SFRH/BD/51197/2010 and SFRH/BPD/79323/2011 to P.G. and S.R., respectively) as well as COMPETE program for the project “Stem cell based platforms for Regenerative and Therapeutic Medicine” (Centro-07-ST24-FEDER-002008). The authors also would like to acknowledge the help of Tommaso Mazzochi for the finite model simulations.Elsevier2017-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/92388http://hdl.handle.net/10316/92388https://doi.org/10.1016/j.biomaterials.2017.05.048eng01429612Gouveia, P JoséRosa, S.Ricotti, L.Abecasis, B.Almeida, H. V.Monteiro, L. R.Nunes, J.Carvalho, F. SofiaSerra, M.Luchkin, S.Kholkin, A. LeonidovitchAlves, P. MarquesOliveira, P. JorgeCarvalho, R.Menciassi, A.Neves, R. Pires dasFerreira, L. Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-06T10:20:15Zoai:estudogeral.uc.pt:10316/92388Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:11:29.759922Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes
title Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes
spellingShingle Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes
Gouveia, P José
Cardiac tissue engineering; Cardiotoxicity; Electrospun fibers; Nanofilms; Piezoelectric materials
Animals
Anti-Arrhythmia Agents
Cell Communication
Cells, Cultured
Coculture Techniques
Doxorubicin
Drug Evaluation, Preclinical
Electric Stimulation
Extracellular Matrix
Humans
Hydrocarbons, Fluorinated
Magnetic Phenomena
Myocardial Contraction
Myocytes, Cardiac
Nanostructures
Polyesters
Rats
Rats, Wistar
Time Factors
Tissue Engineering
Tissue Scaffolds
Vasoconstrictor Agents
Vinyl Compounds
title_short Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes
title_full Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes
title_fullStr Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes
title_full_unstemmed Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes
title_sort Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes
author Gouveia, P José
author_facet Gouveia, P José
Rosa, S.
Ricotti, L.
Abecasis, B.
Almeida, H. V.
Monteiro, L. R.
Nunes, J.
Carvalho, F. Sofia
Serra, M.
Luchkin, S.
Kholkin, A. Leonidovitch
Alves, P. Marques
Oliveira, P. Jorge
Carvalho, R.
Menciassi, A.
Neves, R. Pires das
Ferreira, L. Silva
author_role author
author2 Rosa, S.
Ricotti, L.
Abecasis, B.
Almeida, H. V.
Monteiro, L. R.
Nunes, J.
Carvalho, F. Sofia
Serra, M.
Luchkin, S.
Kholkin, A. Leonidovitch
Alves, P. Marques
Oliveira, P. Jorge
Carvalho, R.
Menciassi, A.
Neves, R. Pires das
Ferreira, L. Silva
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Gouveia, P José
Rosa, S.
Ricotti, L.
Abecasis, B.
Almeida, H. V.
Monteiro, L. R.
Nunes, J.
Carvalho, F. Sofia
Serra, M.
Luchkin, S.
Kholkin, A. Leonidovitch
Alves, P. Marques
Oliveira, P. Jorge
Carvalho, R.
Menciassi, A.
Neves, R. Pires das
Ferreira, L. Silva
dc.subject.por.fl_str_mv Cardiac tissue engineering; Cardiotoxicity; Electrospun fibers; Nanofilms; Piezoelectric materials
Animals
Anti-Arrhythmia Agents
Cell Communication
Cells, Cultured
Coculture Techniques
Doxorubicin
Drug Evaluation, Preclinical
Electric Stimulation
Extracellular Matrix
Humans
Hydrocarbons, Fluorinated
Magnetic Phenomena
Myocardial Contraction
Myocytes, Cardiac
Nanostructures
Polyesters
Rats
Rats, Wistar
Time Factors
Tissue Engineering
Tissue Scaffolds
Vasoconstrictor Agents
Vinyl Compounds
topic Cardiac tissue engineering; Cardiotoxicity; Electrospun fibers; Nanofilms; Piezoelectric materials
Animals
Anti-Arrhythmia Agents
Cell Communication
Cells, Cultured
Coculture Techniques
Doxorubicin
Drug Evaluation, Preclinical
Electric Stimulation
Extracellular Matrix
Humans
Hydrocarbons, Fluorinated
Magnetic Phenomena
Myocardial Contraction
Myocytes, Cardiac
Nanostructures
Polyesters
Rats
Rats, Wistar
Time Factors
Tissue Engineering
Tissue Scaffolds
Vasoconstrictor Agents
Vinyl Compounds
description The use of engineered cardiac tissue for high-throughput drug screening/toxicology assessment remains largely unexplored. Here we propose a scaffold that mimics aspects of cardiac extracellular matrix while preserving the contractility of cardiomyocytes. The scaffold is based on a poly(caprolactone) (PCL) nanofilm with magnetic properties (MNF, standing for magnetic nanofilm) coated with a layer of piezoelectric (PIEZO) microfibers of poly(vinylidene fluoride-trifluoroethylene) (MNF+PIEZO). The nanofilm creates a flexible support for cell contraction and the aligned PIEZO microfibers deposited on top of the nanofilm creates conditions for cell alignment and electrical stimulation of the seeded cells. Our results indicate that MNF+PIEZO scaffold promotes rat and human cardiac cell attachment and alignment, maintains the ratio of cell populations overtime, promotes cell-cell communication and metabolic maturation, and preserves cardiomyocyte (CM) contractility for at least 12 days. The engineered cardiac construct showed high toxicity against doxorubicin, a cardiotoxic molecule, and responded to compounds that modulate CM contraction such as epinephrine, propranolol and heptanol.
publishDate 2017
dc.date.none.fl_str_mv 2017-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/92388
http://hdl.handle.net/10316/92388
https://doi.org/10.1016/j.biomaterials.2017.05.048
url http://hdl.handle.net/10316/92388
https://doi.org/10.1016/j.biomaterials.2017.05.048
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 01429612
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134012040544256