Keratin: dissolution, extraction and biomedical application

Bibliographic Details
Main Author: Shavandi, Amin
Publication Date: 2017
Other Authors: Silva, Tiago H., Bekhit, Adnan A., Bekhit, Alaa El-Din A.
Format: Article
Language: eng
Source: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Download full: http://hdl.handle.net/1822/47006
Summary: Keratinous materials such as wool, feathers and hooves are tough unique biological co-products that usually have high sulfur and protein contents. A high cystine content (7–13%) differentiates keratins from other structural proteins, such as collagen and elastin. Dissolution and extraction of keratin is a difficult process compared to other natural polymers, such as chitosan, starch, collagen, and a large-scale use of keratin depends on employing a relatively fast, cost-effective and time efficient extraction method. Keratin has some inherent ability to facilitate cell adhesion, proliferation, and regeneration of the tissue, therefore keratin biomaterials can provide a biocompatible matrix for regrowth and regeneration of the defective tissue. Additionally, due to its amino acid constituents, keratin can be tailored and finely tuned to meet the exact requirement of degradation, drug release or incorporation of different hydrophobic or hydrophilic tails. This review discusses the various methods available for the dissolution and extraction of keratin with emphasis on their advantages and limitations. The impacts of various methods and chemicals used on the structure and the properties of keratin are discussed with the aim of highlighting options available toward commercial keratin production. This review also reports the properties of various keratinbased biomaterials and critically examines how these materials are influenced by the keratin extraction procedure, discussing the features that make them effective as biomedical applications, as well as some of the mechanisms of action and physiological roles of keratin. Particular attention is given to the practical application of keratin biomaterials, namely addressing the advantages and limitations on the use of keratin films, 3D composite scaffolds and keratin hydrogels for tissue engineering, wound healing, hemostatic and controlled drug release.
id RCAP_96e4871e960cf353cad75b4cf7013f60
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/47006
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Keratin: dissolution, extraction and biomedical applicationBiomaterialsBiomedical applicationKeratinScience & TechnologyKeratinous materials such as wool, feathers and hooves are tough unique biological co-products that usually have high sulfur and protein contents. A high cystine content (7–13%) differentiates keratins from other structural proteins, such as collagen and elastin. Dissolution and extraction of keratin is a difficult process compared to other natural polymers, such as chitosan, starch, collagen, and a large-scale use of keratin depends on employing a relatively fast, cost-effective and time efficient extraction method. Keratin has some inherent ability to facilitate cell adhesion, proliferation, and regeneration of the tissue, therefore keratin biomaterials can provide a biocompatible matrix for regrowth and regeneration of the defective tissue. Additionally, due to its amino acid constituents, keratin can be tailored and finely tuned to meet the exact requirement of degradation, drug release or incorporation of different hydrophobic or hydrophilic tails. This review discusses the various methods available for the dissolution and extraction of keratin with emphasis on their advantages and limitations. The impacts of various methods and chemicals used on the structure and the properties of keratin are discussed with the aim of highlighting options available toward commercial keratin production. This review also reports the properties of various keratinbased biomaterials and critically examines how these materials are influenced by the keratin extraction procedure, discussing the features that make them effective as biomedical applications, as well as some of the mechanisms of action and physiological roles of keratin. Particular attention is given to the practical application of keratin biomaterials, namely addressing the advantages and limitations on the use of keratin films, 3D composite scaffolds and keratin hydrogels for tissue engineering, wound healing, hemostatic and controlled drug release.info:eu-repo/semantics/publishedVersionRoyal Society of ChemistryUniversidade do MinhoShavandi, AminSilva, Tiago H.Bekhit, Adnan A.Bekhit, Alaa El-Din A.2017-052017-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/47006engShavandi A., Silva T. H., Bekhit A. A., Bekhit A. E. - D. A. Keratin: dissolution, extraction and biomedical application, Biomaterials Science, Vol. 5, pp. 1699-1735, doi:10.1039/c7bm00411g, 20172047-48302047-484910.1039/c7bm00411g28686242http://pubs.rsc.org/en/content/articlelanding/2017/bm/c7bm00411g#!divAbstractinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:56:03Zoai:repositorium.sdum.uminho.pt:1822/47006Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:45:39.176426Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Keratin: dissolution, extraction and biomedical application
title Keratin: dissolution, extraction and biomedical application
spellingShingle Keratin: dissolution, extraction and biomedical application
Shavandi, Amin
Biomaterials
Biomedical application
Keratin
Science & Technology
title_short Keratin: dissolution, extraction and biomedical application
title_full Keratin: dissolution, extraction and biomedical application
title_fullStr Keratin: dissolution, extraction and biomedical application
title_full_unstemmed Keratin: dissolution, extraction and biomedical application
title_sort Keratin: dissolution, extraction and biomedical application
author Shavandi, Amin
author_facet Shavandi, Amin
Silva, Tiago H.
Bekhit, Adnan A.
Bekhit, Alaa El-Din A.
author_role author
author2 Silva, Tiago H.
Bekhit, Adnan A.
Bekhit, Alaa El-Din A.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Shavandi, Amin
Silva, Tiago H.
Bekhit, Adnan A.
Bekhit, Alaa El-Din A.
dc.subject.por.fl_str_mv Biomaterials
Biomedical application
Keratin
Science & Technology
topic Biomaterials
Biomedical application
Keratin
Science & Technology
description Keratinous materials such as wool, feathers and hooves are tough unique biological co-products that usually have high sulfur and protein contents. A high cystine content (7–13%) differentiates keratins from other structural proteins, such as collagen and elastin. Dissolution and extraction of keratin is a difficult process compared to other natural polymers, such as chitosan, starch, collagen, and a large-scale use of keratin depends on employing a relatively fast, cost-effective and time efficient extraction method. Keratin has some inherent ability to facilitate cell adhesion, proliferation, and regeneration of the tissue, therefore keratin biomaterials can provide a biocompatible matrix for regrowth and regeneration of the defective tissue. Additionally, due to its amino acid constituents, keratin can be tailored and finely tuned to meet the exact requirement of degradation, drug release or incorporation of different hydrophobic or hydrophilic tails. This review discusses the various methods available for the dissolution and extraction of keratin with emphasis on their advantages and limitations. The impacts of various methods and chemicals used on the structure and the properties of keratin are discussed with the aim of highlighting options available toward commercial keratin production. This review also reports the properties of various keratinbased biomaterials and critically examines how these materials are influenced by the keratin extraction procedure, discussing the features that make them effective as biomedical applications, as well as some of the mechanisms of action and physiological roles of keratin. Particular attention is given to the practical application of keratin biomaterials, namely addressing the advantages and limitations on the use of keratin films, 3D composite scaffolds and keratin hydrogels for tissue engineering, wound healing, hemostatic and controlled drug release.
publishDate 2017
dc.date.none.fl_str_mv 2017-05
2017-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/47006
url http://hdl.handle.net/1822/47006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Shavandi A., Silva T. H., Bekhit A. A., Bekhit A. E. - D. A. Keratin: dissolution, extraction and biomedical application, Biomaterials Science, Vol. 5, pp. 1699-1735, doi:10.1039/c7bm00411g, 2017
2047-4830
2047-4849
10.1039/c7bm00411g
28686242
http://pubs.rsc.org/en/content/articlelanding/2017/bm/c7bm00411g#!divAbstract
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132209165107200