Design patterns for Ethereum smart contracts

Detalhes bibliográficos
Autor(a) principal: Moura, Tiago Augusto Pinto
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/16441
Resumo: The Ethereum platform has become very popular in recent years in smart contract development, an area in which several programming languages are applied. Solidity, nevertheless is the most popular and widely used. On top of blockchain technology, Ethereum and its smart contracts have enabled developers worldwide to create innovative solutions in various areas such as finance, healthcare, insurance, internet of things, supply chain and others. These solutions are referred to as Decentralized Applications (dapps) and use the distributed nature of blockchain technology to solve problems in a disruptive manner, casting out intermediaries and automating processes. The fact that blockchain transactions triggered by smart contract execution are unchangeable also provides dapps users with a lot of confidence when compared to traditional centralized apps, because dapps’ data becomes tamper-proof. In the context of this work, it was necessary to analyze and look for software design patterns in order to help making the development of Solidity smart contracts simpler and safer, thus giving confidence both to users and developers of dapps built with Ethereum. In an initial phase, a literature review was made and 62 design patterns were found. From this set, 30 design patterns were selected for the practical component of this work. In this stage, 318 smart contracts were analyzed and the 30 previously selected patterns were confirmed. Additionally, four more patterns which had not been identified in the literature review stage were found. The 30 design patterns were divided into four categories: authorization, control, maintenance and security. Efficiency across all these categories was evaluated in terms of gas consumption and security vulnerabilities. Once the research was completed, it became possible to create a set of recommendations for Solidity developers.
id RCAP_97745490aa5b133677a3cdfa311cc83d
oai_identifier_str oai:recipp.ipp.pt:10400.22/16441
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Design patterns for Ethereum smart contractsBlockchainEthereumSmart ContractsSoliditySecurityGasDesign PatternsThe Ethereum platform has become very popular in recent years in smart contract development, an area in which several programming languages are applied. Solidity, nevertheless is the most popular and widely used. On top of blockchain technology, Ethereum and its smart contracts have enabled developers worldwide to create innovative solutions in various areas such as finance, healthcare, insurance, internet of things, supply chain and others. These solutions are referred to as Decentralized Applications (dapps) and use the distributed nature of blockchain technology to solve problems in a disruptive manner, casting out intermediaries and automating processes. The fact that blockchain transactions triggered by smart contract execution are unchangeable also provides dapps users with a lot of confidence when compared to traditional centralized apps, because dapps’ data becomes tamper-proof. In the context of this work, it was necessary to analyze and look for software design patterns in order to help making the development of Solidity smart contracts simpler and safer, thus giving confidence both to users and developers of dapps built with Ethereum. In an initial phase, a literature review was made and 62 design patterns were found. From this set, 30 design patterns were selected for the practical component of this work. In this stage, 318 smart contracts were analyzed and the 30 previously selected patterns were confirmed. Additionally, four more patterns which had not been identified in the literature review stage were found. The 30 design patterns were divided into four categories: authorization, control, maintenance and security. Efficiency across all these categories was evaluated in terms of gas consumption and security vulnerabilities. Once the research was completed, it became possible to create a set of recommendations for Solidity developers.A plataforma Ethereum tornou-se muito popular nos últimos anos no desenvolvimento de contratos inteligentes (smart contracts), uma área na qual várias linguagens de programação são aplicadas. Solidity, no entanto, é a mais popular e amplamente utilizada. Alicerçada na tecnologia blockchain, a Ethereum e os seus contratos inteligentes permitiram que programadores por todo o mundo criassem soluções inovadoras em várias áreas como finanças, saúde, seguros, internet das coisas, cadeia de abastecimento e outras. Essas soluções são chamadas de aplicações descentralizadas (dapps) e usam a natureza distribuída da tecnologia blockchain para resolver problemas de maneira disruptiva, elminando intermediários e automatizando processos. O facto das transações registadas na blockchain, que são desencadeadas pela execução de clausulas nos contratos inteligentes, também serem imutáveis dá aos utilizadores das dapps muita confiança em comparação com as aplicações centralizadas tradicionais, porque assim elas tornam-se à prova de adulteração de dados. No contexto deste trabalho, foi necessário analisar e procurar padrões de desenho (design patterns) de software, que ajudassem a tornar o desenvolvimento de contratos inteligentes em Solidity mais simples e seguros, dando confiança tanto aos utilizadores como aos programadores nas dapps construídas através da Ethereum. Numa fase inicial, foi realizada uma revisão da literatura onde foram encontrados sessenta e dois padrões de desenho, dos quais trinta foram selecionados para a componente prática deste trabalho. Durante esta componente, foram analisados trezentos e dezoito contratos inteligentes, onde os trinta padrões previamente selecionados foram confirmados. Além disso, foram encontrados mais quatro padrões que não foram encontrados na revisão da literatura. Os trinta padrões de design escolhidos foram divididos em quatro categorias: autorização, controlo, manutenção e segurança. Todas estas categorias foram avaliadas em termos de eficiência no consumo de gás e vulnerabilidades de segurança. Através de todo o trabalho realizado, tanto teórico quanto prático, foi possível criar um conjunto de recomendações para programadores de Solidity.Azevedo, Isabel de Fátima SilvaRepositório Científico do Instituto Politécnico do PortoMoura, Tiago Augusto Pinto2020-11-05T15:33:11Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/16441TID:202533492porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:03:32Zoai:recipp.ipp.pt:10400.22/16441Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:36:06.687803Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Design patterns for Ethereum smart contracts
title Design patterns for Ethereum smart contracts
spellingShingle Design patterns for Ethereum smart contracts
Moura, Tiago Augusto Pinto
Blockchain
Ethereum
Smart Contracts
Solidity
Security
Gas
Design Patterns
title_short Design patterns for Ethereum smart contracts
title_full Design patterns for Ethereum smart contracts
title_fullStr Design patterns for Ethereum smart contracts
title_full_unstemmed Design patterns for Ethereum smart contracts
title_sort Design patterns for Ethereum smart contracts
author Moura, Tiago Augusto Pinto
author_facet Moura, Tiago Augusto Pinto
author_role author
dc.contributor.none.fl_str_mv Azevedo, Isabel de Fátima Silva
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Moura, Tiago Augusto Pinto
dc.subject.por.fl_str_mv Blockchain
Ethereum
Smart Contracts
Solidity
Security
Gas
Design Patterns
topic Blockchain
Ethereum
Smart Contracts
Solidity
Security
Gas
Design Patterns
description The Ethereum platform has become very popular in recent years in smart contract development, an area in which several programming languages are applied. Solidity, nevertheless is the most popular and widely used. On top of blockchain technology, Ethereum and its smart contracts have enabled developers worldwide to create innovative solutions in various areas such as finance, healthcare, insurance, internet of things, supply chain and others. These solutions are referred to as Decentralized Applications (dapps) and use the distributed nature of blockchain technology to solve problems in a disruptive manner, casting out intermediaries and automating processes. The fact that blockchain transactions triggered by smart contract execution are unchangeable also provides dapps users with a lot of confidence when compared to traditional centralized apps, because dapps’ data becomes tamper-proof. In the context of this work, it was necessary to analyze and look for software design patterns in order to help making the development of Solidity smart contracts simpler and safer, thus giving confidence both to users and developers of dapps built with Ethereum. In an initial phase, a literature review was made and 62 design patterns were found. From this set, 30 design patterns were selected for the practical component of this work. In this stage, 318 smart contracts were analyzed and the 30 previously selected patterns were confirmed. Additionally, four more patterns which had not been identified in the literature review stage were found. The 30 design patterns were divided into four categories: authorization, control, maintenance and security. Efficiency across all these categories was evaluated in terms of gas consumption and security vulnerabilities. Once the research was completed, it became possible to create a set of recommendations for Solidity developers.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-05T15:33:11Z
2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/16441
TID:202533492
url http://hdl.handle.net/10400.22/16441
identifier_str_mv TID:202533492
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131452000960512