3D-ambient noise surface wave tomography of Fogo volcano, Cape Verde

Detalhes bibliográficos
Autor(a) principal: Carvalho, J.
Data de Publicação: 2022
Outros Autores: Silveira, Graça, Dumont, Stéphanie, Ramalho, Ricardo Dos Santos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/56768
Resumo: Fogo volcano belongs to the Cape Verde Archipelago, and it is one of the most active volcanoes in the Atlantic Ocean, which most recent eruption occurred from November 2014 to February 2015. We analyzed ambient seismic noise recordings of three different networks deployed in the island, totalizing 14 seismic stations, to derive a crustal 3D shear-wave crustal velocity model of the volcano. Through the phase cross-correlation technique followed by a time-domain phase weighted stack, we were able to measure Rayleigh wave group-velocity dispersion measurements in the period range from 1.0 to 10 s. These dispersion measurements were used to invert for 2D group velocity maps at selected periods, and then inverted to produce a 3D shear-wave velocity model of the island. The tomographic model shows three velocity domains. First, an asymmetric upper layer, above 5–6 km of depth, with lower velocities concentrated in the northeastern sector of the island and a clear higher-velocity horizontal body at 3–4 km of depth in the southwestern sector of the island; the spatial correlation between these two velocity zones and the Galinheiros normal fault suggests a genetic link between the high velocities and long-term surface deformation, which we related to sill intrusions between 3 and 4.5 km depth, beneath the southwestern sector of the island. Second, a marked higher-velocity horizontal layer in between 5 and 6 km and 8–9 km, interpreted as the seismic expression of pervasive sill and laccolith intrusions, now cooled, beneath the volcanic edifice and within the underlying oceanic crust. Third, a lower velocity layer below 8–9 km of depth, more pronounced beneath the northeastern sector, which could be explained by a hotter and possibly melt-rich zone beneath the volcano or a significantly altered/serpentinized crust. Finally, our study also confirms that Fogo lacks any sizable magma chambers (ancient or recent) within the volcanic edifice, in agreement with other geophysical and petrological studies. These observations demonstrate that 3D-ambient noise Rayleigh wave tomography is a powerful tool to image the crustal and upper mantle structure beneath volcanic islands, as shown here for Fogo volcano.
id RCAP_ac3f598119f35587b9eca7924fae22db
oai_identifier_str oai:repositorio.ul.pt:10451/56768
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling 3D-ambient noise surface wave tomography of Fogo volcano, Cape VerdeCape VerdeFogo volcanoAmbient seismic noiseVolcano tomographySill intrusionsFogo volcano belongs to the Cape Verde Archipelago, and it is one of the most active volcanoes in the Atlantic Ocean, which most recent eruption occurred from November 2014 to February 2015. We analyzed ambient seismic noise recordings of three different networks deployed in the island, totalizing 14 seismic stations, to derive a crustal 3D shear-wave crustal velocity model of the volcano. Through the phase cross-correlation technique followed by a time-domain phase weighted stack, we were able to measure Rayleigh wave group-velocity dispersion measurements in the period range from 1.0 to 10 s. These dispersion measurements were used to invert for 2D group velocity maps at selected periods, and then inverted to produce a 3D shear-wave velocity model of the island. The tomographic model shows three velocity domains. First, an asymmetric upper layer, above 5–6 km of depth, with lower velocities concentrated in the northeastern sector of the island and a clear higher-velocity horizontal body at 3–4 km of depth in the southwestern sector of the island; the spatial correlation between these two velocity zones and the Galinheiros normal fault suggests a genetic link between the high velocities and long-term surface deformation, which we related to sill intrusions between 3 and 4.5 km depth, beneath the southwestern sector of the island. Second, a marked higher-velocity horizontal layer in between 5 and 6 km and 8–9 km, interpreted as the seismic expression of pervasive sill and laccolith intrusions, now cooled, beneath the volcanic edifice and within the underlying oceanic crust. Third, a lower velocity layer below 8–9 km of depth, more pronounced beneath the northeastern sector, which could be explained by a hotter and possibly melt-rich zone beneath the volcano or a significantly altered/serpentinized crust. Finally, our study also confirms that Fogo lacks any sizable magma chambers (ancient or recent) within the volcanic edifice, in agreement with other geophysical and petrological studies. These observations demonstrate that 3D-ambient noise Rayleigh wave tomography is a powerful tool to image the crustal and upper mantle structure beneath volcanic islands, as shown here for Fogo volcano.ElsevierRepositório da Universidade de LisboaCarvalho, J.Silveira, GraçaDumont, StéphanieRamalho, Ricardo Dos Santos20222024-10-25T00:00:00Z2022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/56768eng10.1016/j.jvolgeores.2022.107702info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-14T15:43:11ZPortal AgregadorONG
dc.title.none.fl_str_mv 3D-ambient noise surface wave tomography of Fogo volcano, Cape Verde
title 3D-ambient noise surface wave tomography of Fogo volcano, Cape Verde
spellingShingle 3D-ambient noise surface wave tomography of Fogo volcano, Cape Verde
Carvalho, J.
Cape Verde
Fogo volcano
Ambient seismic noise
Volcano tomography
Sill intrusions
title_short 3D-ambient noise surface wave tomography of Fogo volcano, Cape Verde
title_full 3D-ambient noise surface wave tomography of Fogo volcano, Cape Verde
title_fullStr 3D-ambient noise surface wave tomography of Fogo volcano, Cape Verde
title_full_unstemmed 3D-ambient noise surface wave tomography of Fogo volcano, Cape Verde
title_sort 3D-ambient noise surface wave tomography of Fogo volcano, Cape Verde
author Carvalho, J.
author_facet Carvalho, J.
Silveira, Graça
Dumont, Stéphanie
Ramalho, Ricardo Dos Santos
author_role author
author2 Silveira, Graça
Dumont, Stéphanie
Ramalho, Ricardo Dos Santos
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Carvalho, J.
Silveira, Graça
Dumont, Stéphanie
Ramalho, Ricardo Dos Santos
dc.subject.por.fl_str_mv Cape Verde
Fogo volcano
Ambient seismic noise
Volcano tomography
Sill intrusions
topic Cape Verde
Fogo volcano
Ambient seismic noise
Volcano tomography
Sill intrusions
description Fogo volcano belongs to the Cape Verde Archipelago, and it is one of the most active volcanoes in the Atlantic Ocean, which most recent eruption occurred from November 2014 to February 2015. We analyzed ambient seismic noise recordings of three different networks deployed in the island, totalizing 14 seismic stations, to derive a crustal 3D shear-wave crustal velocity model of the volcano. Through the phase cross-correlation technique followed by a time-domain phase weighted stack, we were able to measure Rayleigh wave group-velocity dispersion measurements in the period range from 1.0 to 10 s. These dispersion measurements were used to invert for 2D group velocity maps at selected periods, and then inverted to produce a 3D shear-wave velocity model of the island. The tomographic model shows three velocity domains. First, an asymmetric upper layer, above 5–6 km of depth, with lower velocities concentrated in the northeastern sector of the island and a clear higher-velocity horizontal body at 3–4 km of depth in the southwestern sector of the island; the spatial correlation between these two velocity zones and the Galinheiros normal fault suggests a genetic link between the high velocities and long-term surface deformation, which we related to sill intrusions between 3 and 4.5 km depth, beneath the southwestern sector of the island. Second, a marked higher-velocity horizontal layer in between 5 and 6 km and 8–9 km, interpreted as the seismic expression of pervasive sill and laccolith intrusions, now cooled, beneath the volcanic edifice and within the underlying oceanic crust. Third, a lower velocity layer below 8–9 km of depth, more pronounced beneath the northeastern sector, which could be explained by a hotter and possibly melt-rich zone beneath the volcano or a significantly altered/serpentinized crust. Finally, our study also confirms that Fogo lacks any sizable magma chambers (ancient or recent) within the volcanic edifice, in agreement with other geophysical and petrological studies. These observations demonstrate that 3D-ambient noise Rayleigh wave tomography is a powerful tool to image the crustal and upper mantle structure beneath volcanic islands, as shown here for Fogo volcano.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2024-10-25T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/56768
url http://hdl.handle.net/10451/56768
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.jvolgeores.2022.107702
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777303443717750784