A high level test processor and test program generator

Detalhes bibliográficos
Autor(a) principal: Francisco X. Duarte
Data de Publicação: 2005
Outros Autores: José Carlos Alves, José Machado da Silva, António Pinho, José Silva Matos
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/71522
Resumo: Embedded test within integrated systems allows to overcome some of the difficulties found when testing using only an external tester. The reutilization of a reconfigurable FPGA-like block that may exist in certain SoC systems, enables the implementation of on-chip test processors highly optimized to meet the specific requirements of the test procedure for each block. The fast reconfiguration of SRAM-based FPGA blocks allows sharing the same physical area among the set of different circuits that may be necessary to implement the on-chip test suite of the whole system. This paper addresses the high level generation of specific programmable processors for testing different blocks within integrated systems, taking advantage of such existing programmable resources. The work presented herein proposes a methodology and a set of automation tools to enable the automatic generation of dedicated custom processor architectures for specific test operations, as well as the corresponding test programs. This facility can be seen as disposing of a highly flexible and optimised embedded tester, supplied as an intellectual property (IP) module and its software. The approach being proposed is based in the implementation of a test processor as an Application Specific Instruction-Set Processor (ASIP), whose set of conventional and dedicated instructions are automatically derived from a software specification of the test operation to be implemented. The actual configuration of the test processor is determined by the type of instructions the test designer uses in the test program. The processors instruction set is configured automatically from the source code of the program to be run, in order to include only the exact instructions required for that task. The generation of a test processor starts with a software specification of the test operation to be performed. Presently, this specification is done using a program written in an assembly level language whose instruction set comprises all the general purpose instructions supported by the processor core, plus an extra set of complex instructions that are responsible for the operation of the peripheral specific blocks. From this specification, a custom programmable processor is generated as a set of synthesisable HDL modules, including the identification of peripheral blocks associated to specific instructions, and the set of constrains and assignments required to instantiate and map these modules onto the FPGA. These descriptions are then forwarded to the specific FPGA technology mapping and implementation tools, to create an application-specific processor that includes only the instructions referred in the source code.
id RCAP_b086dadea94524afd286444a1be57c1d
oai_identifier_str oai:repositorio-aberto.up.pt:10216/71522
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling A high level test processor and test program generatorEngenharia electrónicaElectronic engineeringEmbedded test within integrated systems allows to overcome some of the difficulties found when testing using only an external tester. The reutilization of a reconfigurable FPGA-like block that may exist in certain SoC systems, enables the implementation of on-chip test processors highly optimized to meet the specific requirements of the test procedure for each block. The fast reconfiguration of SRAM-based FPGA blocks allows sharing the same physical area among the set of different circuits that may be necessary to implement the on-chip test suite of the whole system. This paper addresses the high level generation of specific programmable processors for testing different blocks within integrated systems, taking advantage of such existing programmable resources. The work presented herein proposes a methodology and a set of automation tools to enable the automatic generation of dedicated custom processor architectures for specific test operations, as well as the corresponding test programs. This facility can be seen as disposing of a highly flexible and optimised embedded tester, supplied as an intellectual property (IP) module and its software. The approach being proposed is based in the implementation of a test processor as an Application Specific Instruction-Set Processor (ASIP), whose set of conventional and dedicated instructions are automatically derived from a software specification of the test operation to be implemented. The actual configuration of the test processor is determined by the type of instructions the test designer uses in the test program. The processors instruction set is configured automatically from the source code of the program to be run, in order to include only the exact instructions required for that task. The generation of a test processor starts with a software specification of the test operation to be performed. Presently, this specification is done using a program written in an assembly level language whose instruction set comprises all the general purpose instructions supported by the processor core, plus an extra set of complex instructions that are responsible for the operation of the peripheral specific blocks. From this specification, a custom programmable processor is generated as a set of synthesisable HDL modules, including the identification of peripheral blocks associated to specific instructions, and the set of constrains and assignments required to instantiate and map these modules onto the FPGA. These descriptions are then forwarded to the specific FPGA technology mapping and implementation tools, to create an application-specific processor that includes only the instructions referred in the source code.20052005-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/71522engFrancisco X. DuarteJosé Carlos AlvesJosé Machado da SilvaAntónio PinhoJosé Silva Matosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-26T14:11:03ZPortal AgregadorONG
dc.title.none.fl_str_mv A high level test processor and test program generator
title A high level test processor and test program generator
spellingShingle A high level test processor and test program generator
Francisco X. Duarte
Engenharia electrónica
Electronic engineering
title_short A high level test processor and test program generator
title_full A high level test processor and test program generator
title_fullStr A high level test processor and test program generator
title_full_unstemmed A high level test processor and test program generator
title_sort A high level test processor and test program generator
author Francisco X. Duarte
author_facet Francisco X. Duarte
José Carlos Alves
José Machado da Silva
António Pinho
José Silva Matos
author_role author
author2 José Carlos Alves
José Machado da Silva
António Pinho
José Silva Matos
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Francisco X. Duarte
José Carlos Alves
José Machado da Silva
António Pinho
José Silva Matos
dc.subject.por.fl_str_mv Engenharia electrónica
Electronic engineering
topic Engenharia electrónica
Electronic engineering
description Embedded test within integrated systems allows to overcome some of the difficulties found when testing using only an external tester. The reutilization of a reconfigurable FPGA-like block that may exist in certain SoC systems, enables the implementation of on-chip test processors highly optimized to meet the specific requirements of the test procedure for each block. The fast reconfiguration of SRAM-based FPGA blocks allows sharing the same physical area among the set of different circuits that may be necessary to implement the on-chip test suite of the whole system. This paper addresses the high level generation of specific programmable processors for testing different blocks within integrated systems, taking advantage of such existing programmable resources. The work presented herein proposes a methodology and a set of automation tools to enable the automatic generation of dedicated custom processor architectures for specific test operations, as well as the corresponding test programs. This facility can be seen as disposing of a highly flexible and optimised embedded tester, supplied as an intellectual property (IP) module and its software. The approach being proposed is based in the implementation of a test processor as an Application Specific Instruction-Set Processor (ASIP), whose set of conventional and dedicated instructions are automatically derived from a software specification of the test operation to be implemented. The actual configuration of the test processor is determined by the type of instructions the test designer uses in the test program. The processors instruction set is configured automatically from the source code of the program to be run, in order to include only the exact instructions required for that task. The generation of a test processor starts with a software specification of the test operation to be performed. Presently, this specification is done using a program written in an assembly level language whose instruction set comprises all the general purpose instructions supported by the processor core, plus an extra set of complex instructions that are responsible for the operation of the peripheral specific blocks. From this specification, a custom programmable processor is generated as a set of synthesisable HDL modules, including the identification of peripheral blocks associated to specific instructions, and the set of constrains and assignments required to instantiate and map these modules onto the FPGA. These descriptions are then forwarded to the specific FPGA technology mapping and implementation tools, to create an application-specific processor that includes only the instructions referred in the source code.
publishDate 2005
dc.date.none.fl_str_mv 2005
2005-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/71522
url https://hdl.handle.net/10216/71522
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777304169765404673