Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxide

Detalhes bibliográficos
Autor(a) principal: Rios, William Quintela Pimentel
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/39542
Resumo: The phenomenon of cork taint has been largely attributed to the presence of 2,4,6-trichloroanisole (TCA) in cork, which significantly impairs the organoleptic properties of wine. Industrially, the removal of TCA and other contaminants can be performed with various separation processes, among which supercritical extraction in CO₂. Accurate knowledge of solute transport properties, particularly the diffusion coefficient (D₁₂), is essential for the design of efficient supercritical extraction units for the removal of cork contaminants. However, experimental diffusion coefficient data for these compounds are currently unavailable. This study sought to employ classical molecular dynamics simulations, a computational chemistry technique, to determine D₁₂ of cork contaminants in supercritical CO₂. To validate the computational approach, diverse molecular systems comprising of solutes chemically similar to 2,4,6- TCA were simulated under infinite dilution in supercritical CO₂. The simulation outcomes were subsequently compared against existing experimental D₁₂ data. The OPLS-AA force field was selected to model solute molecules, while three CO₂ force fields (EPM2, TraPPE, and Zhu) were evaluated regarding their ability to predict D₁₂. Isobaric-isothermal (NPT ensemble) and isochoricisothermal (NVT ensemble) simulations were conducted within temperature ranges of 308.15 K to 333.15 K and pressures of 103 bar to 300 bar, depending on the availability of experimental data. Among the CO₂ force field and ensemble combinations, the Zhu model in the NPT ensemble demonstrated superior performance, yielding a global average absolute relative deviation (AARD) of 5.3%, followed by the EPM2 model in NVT (AARD 6.1%). These evaluations encompassed simulations of nine distinct solutes in supercritical CO₂, totaling 54 data points. It was shown that molecular dynamics simulations provided more accurate predictions of D₁₂ relative to empirical equations such as Wilke-Chang or TLSM (Tracer-Liu-Silva-Macedo). After the validation procedure, simulations utilizing the Zhu force field in the NPT ensemble were performed for four cork contaminants: 2,4,6-trichloroanisole, 2,4,6-tribromoanisole, 2,4,6-trichlorophenol, and pentachloroanisole. The molecular dynamics-derived D₁₂ for the primary contaminant ranged from 0.66×10ˉ⁴ cm²/s (at 313.15 K, 150 bar) to 1.31×10ˉ⁴4 cm²/s (at 333.15 K, 300 bar). Given that the validation procedure demonstrated the accuracy of molecular dynamics in predicting D₁₂ for structurally similar solutes, these findings can inform the design and optimization of supercritical extraction processes, while the computational approach holds potential for investigating additional physical properties and exploring interactions between cork contaminants and CO₂.
id RCAP_b5a07843cd66d21a90c5d3b7e4e1edbf
oai_identifier_str oai:ria.ua.pt:10773/39542
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxideCork contaminantsDiffusion coefficientMolecular dynamics simulationsSupercritical carbon dioxideTrichloroanisoleThe phenomenon of cork taint has been largely attributed to the presence of 2,4,6-trichloroanisole (TCA) in cork, which significantly impairs the organoleptic properties of wine. Industrially, the removal of TCA and other contaminants can be performed with various separation processes, among which supercritical extraction in CO₂. Accurate knowledge of solute transport properties, particularly the diffusion coefficient (D₁₂), is essential for the design of efficient supercritical extraction units for the removal of cork contaminants. However, experimental diffusion coefficient data for these compounds are currently unavailable. This study sought to employ classical molecular dynamics simulations, a computational chemistry technique, to determine D₁₂ of cork contaminants in supercritical CO₂. To validate the computational approach, diverse molecular systems comprising of solutes chemically similar to 2,4,6- TCA were simulated under infinite dilution in supercritical CO₂. The simulation outcomes were subsequently compared against existing experimental D₁₂ data. The OPLS-AA force field was selected to model solute molecules, while three CO₂ force fields (EPM2, TraPPE, and Zhu) were evaluated regarding their ability to predict D₁₂. Isobaric-isothermal (NPT ensemble) and isochoricisothermal (NVT ensemble) simulations were conducted within temperature ranges of 308.15 K to 333.15 K and pressures of 103 bar to 300 bar, depending on the availability of experimental data. Among the CO₂ force field and ensemble combinations, the Zhu model in the NPT ensemble demonstrated superior performance, yielding a global average absolute relative deviation (AARD) of 5.3%, followed by the EPM2 model in NVT (AARD 6.1%). These evaluations encompassed simulations of nine distinct solutes in supercritical CO₂, totaling 54 data points. It was shown that molecular dynamics simulations provided more accurate predictions of D₁₂ relative to empirical equations such as Wilke-Chang or TLSM (Tracer-Liu-Silva-Macedo). After the validation procedure, simulations utilizing the Zhu force field in the NPT ensemble were performed for four cork contaminants: 2,4,6-trichloroanisole, 2,4,6-tribromoanisole, 2,4,6-trichlorophenol, and pentachloroanisole. The molecular dynamics-derived D₁₂ for the primary contaminant ranged from 0.66×10ˉ⁴ cm²/s (at 313.15 K, 150 bar) to 1.31×10ˉ⁴4 cm²/s (at 333.15 K, 300 bar). Given that the validation procedure demonstrated the accuracy of molecular dynamics in predicting D₁₂ for structurally similar solutes, these findings can inform the design and optimization of supercritical extraction processes, while the computational approach holds potential for investigating additional physical properties and exploring interactions between cork contaminants and CO₂.O fenómeno do sabor à rolha é atribuído à presença de 2,4,6-tricloroanisole (TCA) na cortiça, o que leva à degradação das propriedades organolépticas do vinho. Industrialmente, a remoção de TCA e outros contaminantes pode ser realizada com vários processos de separação, entre os quais a extração supercrítica em CO₂. O conhecimento preciso das propriedades de transporte, em particular do coeficiente de difusão (D₁₂), é essencial para o projeto de unidades eficientes de extração supercrítica para a remoção de contaminantes da cortiça. No entanto, atualmente não existem dados experimentais disponíveis acerca de D₁₂ para esses compostos. Este estudo buscou empregar simulações clássicas de dinâmica molecular, uma técnica de química computacional, para determinar D₁₂ de contaminantes da cortiça em CO₂ supercrítico. Para validar a abordagem computacional, foram simulados diversos sistemas moleculares compostos por solutos quimicamente similares ao 2,4,6-TCA, em diluição infinita em CO₂ supercrítico. Os resultados das simulações foram posteriormente comparados com dados experimentais existentes de coeficientes de difusão. O force field OPLS-AA foi selecionado para modelar as moléculas do soluto, enquanto três force fields para o CO₂ (EPM2, TraPPE e Zhu) foram avaliados em relação à sua capacidade de prever D₁₂. Foram realizadas simulações nos ensembles NPT (isobáricoisotérmico) e NVT (isocórico-isotérmico) abrangendo faixas de temperatura de 308,15 K a 333,15 K e pressões de 103 bar a 300 bar. Entre as combinações de force field para o CO₂ e ensemble, o modelo Zhu no ensemble NPT demonstrou desempenho superior, com um desvio relativo médio absoluto (AARD) de 5,3%, seguido pelo modelo EPM2 no ensemble NVT (AARD 6,1%). Essas avaliações abrangeram simulações de nove solutos distintos em CO₂ supercrítico, totalizando 54 pontos. Demonstrou-se que as simulações de dinâmica molecular forneceram previsões mais precisas de D₁₂ relativamente à resultados de equações empíricas, como Wilke-Chang ou TLSM (Tracer-Liu- Silva-Macedo). Após o procedimento de validação, realizaram-se simulações utilizando o force field Zhu no ensemble NPT para quatro contaminantes da cortiça: 2,4,6-tricloroanisole, 2,4,6-tribromoanisole, 2,4,6-triclorofenol e pentacloroanisole. Os coeficientes de difusão derivados da dinâmica molecular para o contaminante principal variaram de 0,66×10ˉ⁴ cm²/s (a 313,15 K, 150 bar) a 1,31×10ˉ⁴ cm²/s (a 333,15 K, 300 bar). Dado que o procedimento de validação demonstrou a exatidão da dinâmica molecular na previsão de D₁₂, os resultado obtidos podem subsidiar o projeto e a otimização de processos de extração supercrítica, enquanto a abordagem computacional exibe potencial para investigar propriedades físicas adicionais e explorar as interações entre contaminantes da cortiça e CO₂.2023-10-17T15:11:23Z2026-02-14T00:00:00Z2023-07-21T00:00:00Z2023-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/39542engRios, William Quintela Pimentelinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:17:15Zoai:ria.ua.pt:10773/39542Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:42.623706Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxide
title Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxide
spellingShingle Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxide
Rios, William Quintela Pimentel
Cork contaminants
Diffusion coefficient
Molecular dynamics simulations
Supercritical carbon dioxide
Trichloroanisole
title_short Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxide
title_full Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxide
title_fullStr Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxide
title_full_unstemmed Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxide
title_sort Molecular dynamics simulations of diffusion coefficients for cork contaminants in supercritical carbon dioxide
author Rios, William Quintela Pimentel
author_facet Rios, William Quintela Pimentel
author_role author
dc.contributor.author.fl_str_mv Rios, William Quintela Pimentel
dc.subject.por.fl_str_mv Cork contaminants
Diffusion coefficient
Molecular dynamics simulations
Supercritical carbon dioxide
Trichloroanisole
topic Cork contaminants
Diffusion coefficient
Molecular dynamics simulations
Supercritical carbon dioxide
Trichloroanisole
description The phenomenon of cork taint has been largely attributed to the presence of 2,4,6-trichloroanisole (TCA) in cork, which significantly impairs the organoleptic properties of wine. Industrially, the removal of TCA and other contaminants can be performed with various separation processes, among which supercritical extraction in CO₂. Accurate knowledge of solute transport properties, particularly the diffusion coefficient (D₁₂), is essential for the design of efficient supercritical extraction units for the removal of cork contaminants. However, experimental diffusion coefficient data for these compounds are currently unavailable. This study sought to employ classical molecular dynamics simulations, a computational chemistry technique, to determine D₁₂ of cork contaminants in supercritical CO₂. To validate the computational approach, diverse molecular systems comprising of solutes chemically similar to 2,4,6- TCA were simulated under infinite dilution in supercritical CO₂. The simulation outcomes were subsequently compared against existing experimental D₁₂ data. The OPLS-AA force field was selected to model solute molecules, while three CO₂ force fields (EPM2, TraPPE, and Zhu) were evaluated regarding their ability to predict D₁₂. Isobaric-isothermal (NPT ensemble) and isochoricisothermal (NVT ensemble) simulations were conducted within temperature ranges of 308.15 K to 333.15 K and pressures of 103 bar to 300 bar, depending on the availability of experimental data. Among the CO₂ force field and ensemble combinations, the Zhu model in the NPT ensemble demonstrated superior performance, yielding a global average absolute relative deviation (AARD) of 5.3%, followed by the EPM2 model in NVT (AARD 6.1%). These evaluations encompassed simulations of nine distinct solutes in supercritical CO₂, totaling 54 data points. It was shown that molecular dynamics simulations provided more accurate predictions of D₁₂ relative to empirical equations such as Wilke-Chang or TLSM (Tracer-Liu-Silva-Macedo). After the validation procedure, simulations utilizing the Zhu force field in the NPT ensemble were performed for four cork contaminants: 2,4,6-trichloroanisole, 2,4,6-tribromoanisole, 2,4,6-trichlorophenol, and pentachloroanisole. The molecular dynamics-derived D₁₂ for the primary contaminant ranged from 0.66×10ˉ⁴ cm²/s (at 313.15 K, 150 bar) to 1.31×10ˉ⁴4 cm²/s (at 333.15 K, 300 bar). Given that the validation procedure demonstrated the accuracy of molecular dynamics in predicting D₁₂ for structurally similar solutes, these findings can inform the design and optimization of supercritical extraction processes, while the computational approach holds potential for investigating additional physical properties and exploring interactions between cork contaminants and CO₂.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-17T15:11:23Z
2023-07-21T00:00:00Z
2023-07-21
2026-02-14T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/39542
url http://hdl.handle.net/10773/39542
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137747728859136