Design Bases for Modulated Complexation by Electrochemistry

Detalhes bibliográficos
Autor(a) principal: Sánchez,J.O.
Data de Publicação: 2007
Outros Autores: Tejeda,P.R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042007000200001
Resumo: The treatment of liquid organic phases to remove undesirable compounds is currently a priority in different industries. In oil refinery, it is necessary to reduce sulphur compounds, in gasolines, to below 50 ppm.The traditional form is catalytic hydrodesulphuration; however, this system is not effective for some compounds, e.g., alkyl substituted dibenzothiophenes. The processes for modulated complexation by electrochemistry are based on the capacity of a complexing agent, in a certain oxidation state, to form a bond with the molecule to be removed from a liquid phase. If the contaminant, the solute, is in an organic phase, the complexant must be soluble in aqueous phase. When the complexant is formed and in contact with both phases the contaminant is extracted. In a second stage, the complexing agent is oxidized (or reduced) to a state of less affinity to the contaminant, and the aqueous phase is placed in contact with a new organic phase where the contaminant will be discharged and concentrated. The complexant agent in aqueous phase is reduced (or oxidized) to its state of higher affinity for the contaminant and recirculated to the extraction stage. In this work, we present the conditions necessary for this process to be feasible, the criteria for the selection of the complexes, the methodology for matter balances, determination of energy consumption and thermodynamic calculations, and also three examples of an organic phase: dibenzotiophene, pyridine, and methyl thioether, using as complexing agent iron tetrakis-(p-sulphonatophenyl) porphyrin.
id RCAP_ba8b60c389d5ecef9a2f851bb92b42a6
oai_identifier_str oai:scielo:S0872-19042007000200001
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Design Bases for Modulated Complexation by Electrochemistrymodulated complexation by electrochemistryiron tetrakis(p-sulphonatophenyl) porphyrincontaminants’ treatment in organic solventsThe treatment of liquid organic phases to remove undesirable compounds is currently a priority in different industries. In oil refinery, it is necessary to reduce sulphur compounds, in gasolines, to below 50 ppm.The traditional form is catalytic hydrodesulphuration; however, this system is not effective for some compounds, e.g., alkyl substituted dibenzothiophenes. The processes for modulated complexation by electrochemistry are based on the capacity of a complexing agent, in a certain oxidation state, to form a bond with the molecule to be removed from a liquid phase. If the contaminant, the solute, is in an organic phase, the complexant must be soluble in aqueous phase. When the complexant is formed and in contact with both phases the contaminant is extracted. In a second stage, the complexing agent is oxidized (or reduced) to a state of less affinity to the contaminant, and the aqueous phase is placed in contact with a new organic phase where the contaminant will be discharged and concentrated. The complexant agent in aqueous phase is reduced (or oxidized) to its state of higher affinity for the contaminant and recirculated to the extraction stage. In this work, we present the conditions necessary for this process to be feasible, the criteria for the selection of the complexes, the methodology for matter balances, determination of energy consumption and thermodynamic calculations, and also three examples of an organic phase: dibenzotiophene, pyridine, and methyl thioether, using as complexing agent iron tetrakis-(p-sulphonatophenyl) porphyrin.Sociedade Portuguesa de Electroquímica2007-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042007000200001Portugaliae Electrochimica Acta v.25 n.2 2007reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042007000200001Sánchez,J.O.Tejeda,P.R.info:eu-repo/semantics/openAccess2024-02-06T17:06:51Zoai:scielo:S0872-19042007000200001Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:20:02.301820Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Design Bases for Modulated Complexation by Electrochemistry
title Design Bases for Modulated Complexation by Electrochemistry
spellingShingle Design Bases for Modulated Complexation by Electrochemistry
Sánchez,J.O.
modulated complexation by electrochemistry
iron tetrakis(p-sulphonatophenyl) porphyrin
contaminants’ treatment in organic solvents
title_short Design Bases for Modulated Complexation by Electrochemistry
title_full Design Bases for Modulated Complexation by Electrochemistry
title_fullStr Design Bases for Modulated Complexation by Electrochemistry
title_full_unstemmed Design Bases for Modulated Complexation by Electrochemistry
title_sort Design Bases for Modulated Complexation by Electrochemistry
author Sánchez,J.O.
author_facet Sánchez,J.O.
Tejeda,P.R.
author_role author
author2 Tejeda,P.R.
author2_role author
dc.contributor.author.fl_str_mv Sánchez,J.O.
Tejeda,P.R.
dc.subject.por.fl_str_mv modulated complexation by electrochemistry
iron tetrakis(p-sulphonatophenyl) porphyrin
contaminants’ treatment in organic solvents
topic modulated complexation by electrochemistry
iron tetrakis(p-sulphonatophenyl) porphyrin
contaminants’ treatment in organic solvents
description The treatment of liquid organic phases to remove undesirable compounds is currently a priority in different industries. In oil refinery, it is necessary to reduce sulphur compounds, in gasolines, to below 50 ppm.The traditional form is catalytic hydrodesulphuration; however, this system is not effective for some compounds, e.g., alkyl substituted dibenzothiophenes. The processes for modulated complexation by electrochemistry are based on the capacity of a complexing agent, in a certain oxidation state, to form a bond with the molecule to be removed from a liquid phase. If the contaminant, the solute, is in an organic phase, the complexant must be soluble in aqueous phase. When the complexant is formed and in contact with both phases the contaminant is extracted. In a second stage, the complexing agent is oxidized (or reduced) to a state of less affinity to the contaminant, and the aqueous phase is placed in contact with a new organic phase where the contaminant will be discharged and concentrated. The complexant agent in aqueous phase is reduced (or oxidized) to its state of higher affinity for the contaminant and recirculated to the extraction stage. In this work, we present the conditions necessary for this process to be feasible, the criteria for the selection of the complexes, the methodology for matter balances, determination of energy consumption and thermodynamic calculations, and also three examples of an organic phase: dibenzotiophene, pyridine, and methyl thioether, using as complexing agent iron tetrakis-(p-sulphonatophenyl) porphyrin.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042007000200001
url http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042007000200001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042007000200001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Portuguesa de Electroquímica
publisher.none.fl_str_mv Sociedade Portuguesa de Electroquímica
dc.source.none.fl_str_mv Portugaliae Electrochimica Acta v.25 n.2 2007
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137289471787008