Visualization of evolving social networks using actor-level and community-level trajectories
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/5357 http://dx.doi.org/10.1111/exsy.12028 |
Resumo: | Visualization of static social networks is a mature research field in information visualization. Conventional approaches rely on node-link diagrams that provide a representation of the network topology by representing nodes as points and links between them as lines. However, the increasing availability of longitudinal network data has spurred interest in visualization techniques that go beyond the static node-link representation of a network. In temporal settings, the focus is on the network dynamics at different levels of analysis (e.g. node, communities and whole network). Yet, the development of visualizations that are able to provide actionable insights into different types of changes occurring in the network and their impact on both the neighbourhood and the overall network structure is a challenging task. In such settings, traditional node-link representations can prove to be limited (Yi et al., 2010). Alternative methods, such as matrix graph representations, fail in tasks involving path finding (Ghoniem et al., 2005). This work attempts to overcome these issues by proposing a methodology for tracking the evolution of dynamic social networks, at both the node-level and the community-level, based on the concept of temporal trajectory. We resort to three-order tensors to represent evolving social networks, and we further decompose them using a Tucker3 model. The two most representative components of this model define the 2D space where the trajectories of social entities are projected. To illustrate the proposed methodology, we conduct a case study using a set of temporal self-reported friendship networks. |
id |
RCAP_cb4ef30deb6e3f4d6db0e7ded3eae4ca |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/5357 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Visualization of evolving social networks using actor-level and community-level trajectoriesVisualization of static social networks is a mature research field in information visualization. Conventional approaches rely on node-link diagrams that provide a representation of the network topology by representing nodes as points and links between them as lines. However, the increasing availability of longitudinal network data has spurred interest in visualization techniques that go beyond the static node-link representation of a network. In temporal settings, the focus is on the network dynamics at different levels of analysis (e.g. node, communities and whole network). Yet, the development of visualizations that are able to provide actionable insights into different types of changes occurring in the network and their impact on both the neighbourhood and the overall network structure is a challenging task. In such settings, traditional node-link representations can prove to be limited (Yi et al., 2010). Alternative methods, such as matrix graph representations, fail in tasks involving path finding (Ghoniem et al., 2005). This work attempts to overcome these issues by proposing a methodology for tracking the evolution of dynamic social networks, at both the node-level and the community-level, based on the concept of temporal trajectory. We resort to three-order tensors to represent evolving social networks, and we further decompose them using a Tucker3 model. The two most representative components of this model define the 2D space where the trajectories of social entities are projected. To illustrate the proposed methodology, we conduct a case study using a set of temporal self-reported friendship networks.2018-01-03T10:38:32Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5357http://dx.doi.org/10.1111/exsy.12028engMárcia Barbosa OliveiraJoão Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:56Zoai:repositorio.inesctec.pt:123456789/5357Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:48.439826Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Visualization of evolving social networks using actor-level and community-level trajectories |
title |
Visualization of evolving social networks using actor-level and community-level trajectories |
spellingShingle |
Visualization of evolving social networks using actor-level and community-level trajectories Márcia Barbosa Oliveira |
title_short |
Visualization of evolving social networks using actor-level and community-level trajectories |
title_full |
Visualization of evolving social networks using actor-level and community-level trajectories |
title_fullStr |
Visualization of evolving social networks using actor-level and community-level trajectories |
title_full_unstemmed |
Visualization of evolving social networks using actor-level and community-level trajectories |
title_sort |
Visualization of evolving social networks using actor-level and community-level trajectories |
author |
Márcia Barbosa Oliveira |
author_facet |
Márcia Barbosa Oliveira João Gama |
author_role |
author |
author2 |
João Gama |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Márcia Barbosa Oliveira João Gama |
description |
Visualization of static social networks is a mature research field in information visualization. Conventional approaches rely on node-link diagrams that provide a representation of the network topology by representing nodes as points and links between them as lines. However, the increasing availability of longitudinal network data has spurred interest in visualization techniques that go beyond the static node-link representation of a network. In temporal settings, the focus is on the network dynamics at different levels of analysis (e.g. node, communities and whole network). Yet, the development of visualizations that are able to provide actionable insights into different types of changes occurring in the network and their impact on both the neighbourhood and the overall network structure is a challenging task. In such settings, traditional node-link representations can prove to be limited (Yi et al., 2010). Alternative methods, such as matrix graph representations, fail in tasks involving path finding (Ghoniem et al., 2005). This work attempts to overcome these issues by proposing a methodology for tracking the evolution of dynamic social networks, at both the node-level and the community-level, based on the concept of temporal trajectory. We resort to three-order tensors to represent evolving social networks, and we further decompose them using a Tucker3 model. The two most representative components of this model define the 2D space where the trajectories of social entities are projected. To illustrate the proposed methodology, we conduct a case study using a set of temporal self-reported friendship networks. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2013 2018-01-03T10:38:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/5357 http://dx.doi.org/10.1111/exsy.12028 |
url |
http://repositorio.inesctec.pt/handle/123456789/5357 http://dx.doi.org/10.1111/exsy.12028 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131611896217600 |