Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario

Detalhes bibliográficos
Autor(a) principal: Pacheco, A.
Data de Publicação: 2016
Outros Autores: Ferreira, Óscar
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/9242
Resumo: The development on tidal turbine technology is ongoing with focus on several aspects, including hydrodynamics, operation and environment. Before considering an area for exploitation, tidal energy resource assessments in pre-feasibility energy extraction areas must include the relevant characteristics of the device to be used. The present paper uses the momentum source approach to represent a floatable tidal energy converter (TECs) in a coastal hydro-morphodynamic model and to perform model simulations utilising different TEC array schernes by quantifying the aggregated drag coefficient of the device array. Simulations for one-month periods with nested models were performed to evaluate the hydrodynamic impacts of energy extraction using as output parameters the reduction in velocity and water-level variation differences against a no-extraction scenario. The case study focuses on representing the deployment of floatable E35 Evopod TECs in Sanda Sound (South Kintyre, Argyll, Scotland). The range in power output values from the simulations clearly reflects the importance of choosing the location of the array, as slight changes in the location (of <1 km) can approximately double the potential power output. However, the doubling of the installed capacity of TECs doubles the mean velocity deficit and water level differences in the area surrounding the extraction point. These differences are amplified by a maximum factor of 4 during peak flood/ebb during spring tides. In the simulations, the drag coefficient is set to be constant, which represents a fixed operational state of the turbine, and is a limitation of coastal models of this type that cannot presently be solved. Nevertheless, the nesting of models with different resolutions, as presented in this paper, makes it possible to achieve continuous improvements in the accuracy of the quantification of momentum loss by representing turbine characteristics close to the scale of the turbine. (C) 2016 Elsevier Ltd. All rights reserved.
id RCAP_d6a5c17b379327c684f30e1d47957e3e
oai_identifier_str oai:sapientia.ualg.pt:10400.1/9242
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenarioThe development on tidal turbine technology is ongoing with focus on several aspects, including hydrodynamics, operation and environment. Before considering an area for exploitation, tidal energy resource assessments in pre-feasibility energy extraction areas must include the relevant characteristics of the device to be used. The present paper uses the momentum source approach to represent a floatable tidal energy converter (TECs) in a coastal hydro-morphodynamic model and to perform model simulations utilising different TEC array schernes by quantifying the aggregated drag coefficient of the device array. Simulations for one-month periods with nested models were performed to evaluate the hydrodynamic impacts of energy extraction using as output parameters the reduction in velocity and water-level variation differences against a no-extraction scenario. The case study focuses on representing the deployment of floatable E35 Evopod TECs in Sanda Sound (South Kintyre, Argyll, Scotland). The range in power output values from the simulations clearly reflects the importance of choosing the location of the array, as slight changes in the location (of <1 km) can approximately double the potential power output. However, the doubling of the installed capacity of TECs doubles the mean velocity deficit and water level differences in the area surrounding the extraction point. These differences are amplified by a maximum factor of 4 during peak flood/ebb during spring tides. In the simulations, the drag coefficient is set to be constant, which represents a fixed operational state of the turbine, and is a limitation of coastal models of this type that cannot presently be solved. Nevertheless, the nesting of models with different resolutions, as presented in this paper, makes it possible to achieve continuous improvements in the accuracy of the quantification of momentum loss by representing turbine characteristics close to the scale of the turbine. (C) 2016 Elsevier Ltd. All rights reserved.ElsevierSapientiaPacheco, A.Ferreira, Óscar2017-04-07T15:55:52Z2016-102016-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/9242eng0306-2619AUT: OFE00989;10.1016/j.apenergy.2016.07.132info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:20:39ZPortal AgregadorONG
dc.title.none.fl_str_mv Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario
title Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario
spellingShingle Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario
Pacheco, A.
title_short Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario
title_full Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario
title_fullStr Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario
title_full_unstemmed Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario
title_sort Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario
author Pacheco, A.
author_facet Pacheco, A.
Ferreira, Óscar
author_role author
author2 Ferreira, Óscar
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Pacheco, A.
Ferreira, Óscar
description The development on tidal turbine technology is ongoing with focus on several aspects, including hydrodynamics, operation and environment. Before considering an area for exploitation, tidal energy resource assessments in pre-feasibility energy extraction areas must include the relevant characteristics of the device to be used. The present paper uses the momentum source approach to represent a floatable tidal energy converter (TECs) in a coastal hydro-morphodynamic model and to perform model simulations utilising different TEC array schernes by quantifying the aggregated drag coefficient of the device array. Simulations for one-month periods with nested models were performed to evaluate the hydrodynamic impacts of energy extraction using as output parameters the reduction in velocity and water-level variation differences against a no-extraction scenario. The case study focuses on representing the deployment of floatable E35 Evopod TECs in Sanda Sound (South Kintyre, Argyll, Scotland). The range in power output values from the simulations clearly reflects the importance of choosing the location of the array, as slight changes in the location (of <1 km) can approximately double the potential power output. However, the doubling of the installed capacity of TECs doubles the mean velocity deficit and water level differences in the area surrounding the extraction point. These differences are amplified by a maximum factor of 4 during peak flood/ebb during spring tides. In the simulations, the drag coefficient is set to be constant, which represents a fixed operational state of the turbine, and is a limitation of coastal models of this type that cannot presently be solved. Nevertheless, the nesting of models with different resolutions, as presented in this paper, makes it possible to achieve continuous improvements in the accuracy of the quantification of momentum loss by representing turbine characteristics close to the scale of the turbine. (C) 2016 Elsevier Ltd. All rights reserved.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
2016-10-01T00:00:00Z
2017-04-07T15:55:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/9242
url http://hdl.handle.net/10400.1/9242
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0306-2619
AUT: OFE00989;
10.1016/j.apenergy.2016.07.132
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777303901685415936