Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-Hexadecane

Detalhes bibliográficos
Autor(a) principal: Dias, Francisco José Ramos
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/13022
Resumo: There has been an increase in concerns about the planet earth and its resources throughout the past decades. The dependency on fossil fuels created a critical dilemma since transportation is currently fueled by traditional, not sustainable power sources. The originated climate crisis on fossil fuels demands action from mankind, specifically concerning the research on alternative ways of fueling the current methods of transportation. The implementation of Biofuels in transportation encourages future scientists and engineers as a realistic option among other different paths constructed to develop sustainable fuels. The study of the injection, impinging, evaporation, and combustion allows the improvement of the burning characteristics assuming a specific fuel within a combustion chamber. These investigations of the combustion and evaporation procedures improve the burning droplet performance and thus reduce the emitted emissions under the same circumstances. This study intends to numerically simulate the single droplet evaporation and combustion of fuel droplets in a drop tube furnace (DTF) that has the capacity of varying the ambient temperature. The numerical approach simplifies the physical phenomena by employing an Eulerian-Lagrangian approach, considering a discrete and a continuous phase, which is further accomplished while running in a CFD software. The continuous phase is computed recurring to a turbulence modeling, while the dispersed phase is separately computed using the discrete phase model. The computation of the combustion phenomenon is deeply related to the evaporation of the discrete phase employing the non-premixed combustion provided by the operating software. There is a 2D planar simplification of the 3D axisymmetric experimental cylinder followed by the respective discretization of the mathematical equations and pressure-velocity coupling. This work numerically simulates the burning phenomenon of n-dodecane, jet fuel, and nhexadecane single droplets. The obtained results of the droplet size reduction relating to time display agreement with the d 2 law and respective experimentally obtained data. The acquired outcomes also allow the establishment of correlations between the combustion characteristics and the droplet physics properties, such as velocity, displaying a reduction of the droplet velocity alongside the shrink of the droplet diameter. This information is visible for different temperature environments and fuels, suggesting a physical association. Besides this interpretation, the imposed droplet initial velocity variations (1.0 m/s until 1.3 m/s) do not affect the combustion characteristics outcomes. This study demonstrates a precise relation between the ambient temperature of the drop tube furnace (DTF) and the improvement of the combustion process and burning properties. Additionally, the chemical composition of the fuels influences the combustion characteristics and their performances. Overall, the numerical performed simulation can be improved and thus approximate the implemented simulation to the occurring physical event, allowing the development of the additional knowledge in this thematic.
id RCAP_d78571e2eaed91957e9a78a6a6792184
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/13022
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-HexadecaneCombustão de Gota IsoladaCombustíveis AlternativosEuler-LagrangeJet FuelSimulação NuméricaDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaThere has been an increase in concerns about the planet earth and its resources throughout the past decades. The dependency on fossil fuels created a critical dilemma since transportation is currently fueled by traditional, not sustainable power sources. The originated climate crisis on fossil fuels demands action from mankind, specifically concerning the research on alternative ways of fueling the current methods of transportation. The implementation of Biofuels in transportation encourages future scientists and engineers as a realistic option among other different paths constructed to develop sustainable fuels. The study of the injection, impinging, evaporation, and combustion allows the improvement of the burning characteristics assuming a specific fuel within a combustion chamber. These investigations of the combustion and evaporation procedures improve the burning droplet performance and thus reduce the emitted emissions under the same circumstances. This study intends to numerically simulate the single droplet evaporation and combustion of fuel droplets in a drop tube furnace (DTF) that has the capacity of varying the ambient temperature. The numerical approach simplifies the physical phenomena by employing an Eulerian-Lagrangian approach, considering a discrete and a continuous phase, which is further accomplished while running in a CFD software. The continuous phase is computed recurring to a turbulence modeling, while the dispersed phase is separately computed using the discrete phase model. The computation of the combustion phenomenon is deeply related to the evaporation of the discrete phase employing the non-premixed combustion provided by the operating software. There is a 2D planar simplification of the 3D axisymmetric experimental cylinder followed by the respective discretization of the mathematical equations and pressure-velocity coupling. This work numerically simulates the burning phenomenon of n-dodecane, jet fuel, and nhexadecane single droplets. The obtained results of the droplet size reduction relating to time display agreement with the d 2 law and respective experimentally obtained data. The acquired outcomes also allow the establishment of correlations between the combustion characteristics and the droplet physics properties, such as velocity, displaying a reduction of the droplet velocity alongside the shrink of the droplet diameter. This information is visible for different temperature environments and fuels, suggesting a physical association. Besides this interpretation, the imposed droplet initial velocity variations (1.0 m/s until 1.3 m/s) do not affect the combustion characteristics outcomes. This study demonstrates a precise relation between the ambient temperature of the drop tube furnace (DTF) and the improvement of the combustion process and burning properties. Additionally, the chemical composition of the fuels influences the combustion characteristics and their performances. Overall, the numerical performed simulation can be improved and thus approximate the implemented simulation to the occurring physical event, allowing the development of the additional knowledge in this thematic.As preocupações relativamente ao planeta Terra e os seus recursos naturais têm vindo a aumentar nas últimas décadas. A dependência de combustíveis fósseis provocou um problema delicado, visto que o transporte atualmente é essencialmente abastecido por fontes de energia tradicionais e não sustentáveis. A crise climática originada devido à utilização de combustíveis fósseis exige ações da humanidade, especificamente no que se refere à pesquisa de formas inovadoras de abastecer os atuais meios de transporte. A implementação de biocombustíveis nos transportes atuais, desperta o interesse dos cientistas e engenheiros como uma opção viável entre os distintos possíveis caminhos para se desenvolver opções de combustíveis sustentáveis. O estudo de fenómenos como a injeção, a colisão de gotas, a evaporação e a combustão permite a melhoria das características de queima de um determinado combustível dentro da câmara de combustão, porém o estudo da combustão e da evaporação revela ser a forma mais eficiente para reduzir as emissões e melhorarando significativamente o desempenho da queima. Este estudo pretende simular numericamente a evaporação e combustão de gotículas de combustível dentro de um forno tubular com capacidade de variar a temperatura ambiente. A abordagem numérica simplifica os fenómenos físicos, empregando uma abordagem EulerLagrange realizada com auxílio de um software de Dinâmica de Fluidos Computacional (DFC). A fase contínua é calculada recorrendo a um modelo de turbulência, enquanto a fase dispersa é calculada separadamente utilizando um modelo de fase discreta. O cálculo do fenómeno de combustão está profundamente relacionado à evaporação da fase discreta empregando posteriormente o modelo de combustão fornecida pelo software utilizado. Adicionalmente, existe uma simplificação 2D do domínio e a respetiva discretização das equações matemáticas em conformidade com o acoplamento pressão-velocidade do modelo numérico. Neste trabalho o fenómeno de queima de gotas é simulado para gotas isoladas de n-dodecano, jet fuel e n-hexadecano. Os resultados obtidos relativamente à evolução temporal do diâmetro da gota mostram concordância com a lei d 2 e respetivos dados obtidos experimentalmente. Os resultados adquiridos também permitem uma correlação das características da combustão e a dinâmica das gotas, apresentando uma redução entre velocidade das gotas e a respetiva redução do diâmetro das gotas. Esta relação ocorre para diferentes temperaturas do meio continuo e utilizando diferentes combustíveis, sugerindo uma associação física. Além dessa interpretação, a variação da velocidade inicial da gota não afeta os resultados das características de combustão. Durante o estudo é demonstrada uma relação entre a temperatura ambiente do forno tubular e a indução do processo de combustão bem como as propriedades de queima da gota. Além disso, as composições químicas dos combustíveis utilizados aparenta influenciar as características de combustão da gota e o seu desempenho global na câmara de combustão. De uma forma geral, a simulação numérica poderá ser optimizada em trabalhos futuros e aproximar a simulação ao fenómeno fisico, permitindo assim o desenvolvimento de conhecimentos nesta temática.Silva, André Resende Rodrigues dauBibliorumDias, Francisco José Ramos2023-02-20T09:25:38Z2022-03-252022-01-312022-03-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/13022TID:203225503enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-02-22T02:32:27ZPortal AgregadorONG
dc.title.none.fl_str_mv Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-Hexadecane
title Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-Hexadecane
spellingShingle Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-Hexadecane
Dias, Francisco José Ramos
Combustão de Gota Isolada
Combustíveis Alternativos
Euler-Lagrange
Jet Fuel
Simulação Numérica
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
title_short Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-Hexadecane
title_full Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-Hexadecane
title_fullStr Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-Hexadecane
title_full_unstemmed Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-Hexadecane
title_sort Numerical Analysis of a Single Droplet Combustion: Jet-A1, N-Dodecane, N-Hexadecane
author Dias, Francisco José Ramos
author_facet Dias, Francisco José Ramos
author_role author
dc.contributor.none.fl_str_mv Silva, André Resende Rodrigues da
uBibliorum
dc.contributor.author.fl_str_mv Dias, Francisco José Ramos
dc.subject.por.fl_str_mv Combustão de Gota Isolada
Combustíveis Alternativos
Euler-Lagrange
Jet Fuel
Simulação Numérica
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
topic Combustão de Gota Isolada
Combustíveis Alternativos
Euler-Lagrange
Jet Fuel
Simulação Numérica
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
description There has been an increase in concerns about the planet earth and its resources throughout the past decades. The dependency on fossil fuels created a critical dilemma since transportation is currently fueled by traditional, not sustainable power sources. The originated climate crisis on fossil fuels demands action from mankind, specifically concerning the research on alternative ways of fueling the current methods of transportation. The implementation of Biofuels in transportation encourages future scientists and engineers as a realistic option among other different paths constructed to develop sustainable fuels. The study of the injection, impinging, evaporation, and combustion allows the improvement of the burning characteristics assuming a specific fuel within a combustion chamber. These investigations of the combustion and evaporation procedures improve the burning droplet performance and thus reduce the emitted emissions under the same circumstances. This study intends to numerically simulate the single droplet evaporation and combustion of fuel droplets in a drop tube furnace (DTF) that has the capacity of varying the ambient temperature. The numerical approach simplifies the physical phenomena by employing an Eulerian-Lagrangian approach, considering a discrete and a continuous phase, which is further accomplished while running in a CFD software. The continuous phase is computed recurring to a turbulence modeling, while the dispersed phase is separately computed using the discrete phase model. The computation of the combustion phenomenon is deeply related to the evaporation of the discrete phase employing the non-premixed combustion provided by the operating software. There is a 2D planar simplification of the 3D axisymmetric experimental cylinder followed by the respective discretization of the mathematical equations and pressure-velocity coupling. This work numerically simulates the burning phenomenon of n-dodecane, jet fuel, and nhexadecane single droplets. The obtained results of the droplet size reduction relating to time display agreement with the d 2 law and respective experimentally obtained data. The acquired outcomes also allow the establishment of correlations between the combustion characteristics and the droplet physics properties, such as velocity, displaying a reduction of the droplet velocity alongside the shrink of the droplet diameter. This information is visible for different temperature environments and fuels, suggesting a physical association. Besides this interpretation, the imposed droplet initial velocity variations (1.0 m/s until 1.3 m/s) do not affect the combustion characteristics outcomes. This study demonstrates a precise relation between the ambient temperature of the drop tube furnace (DTF) and the improvement of the combustion process and burning properties. Additionally, the chemical composition of the fuels influences the combustion characteristics and their performances. Overall, the numerical performed simulation can be improved and thus approximate the implemented simulation to the occurring physical event, allowing the development of the additional knowledge in this thematic.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-25
2022-01-31
2022-03-25T00:00:00Z
2023-02-20T09:25:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/13022
TID:203225503
url http://hdl.handle.net/10400.6/13022
identifier_str_mv TID:203225503
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777302015972474880