Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgaris

Detalhes bibliográficos
Autor(a) principal: Fernandes, Diana Alexandra Ferreira
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/14907
Resumo: Pharmaceuticals end up into the influent of municipal wastewater treatment plants (WWTPs). through the sewage system and due to the inability of conventional treatments to remove them, they are found on the environment. This work is focused on the contribution to the development of sustainable and economical tertiary treatments to remove pharmaceuticals in WWTPs.This study was developed within the scope of the international collaborative project REWATER, developed under the “Water Challenges for a Changing World Joint Program Initiative” (Water JPI). The microalga Chlorella vulgaris, live and dead, was used as biosorbent to remove a pharmaceutical that is consumed worldwide, fluoxetine, from aqueous solutions. Infrared spectroscopy characterization was made to living and lyophilized microalgae with and without being in contact with fluoxetine. This characterization allowed to identify the main functional groups, such as hydroxyl, sulfonic and carboxylic, that are probably involved in the biosorption process. The pH at the point of zero charge was 7.0 and 5.8 for living and dead microalgae, respectively. The study of the pH influence was performed. In relation to living microalgae, pH dependency was observed. As the initial pH increased, uptake adsorption of microalgae decreased. The reduction on the capacity was related to the pKa. The most favourable conditions for biosorption occur in pH range between 7.0 and 9.8 due to the electrostatic attraction between the positively charged fluoxetine and the negative charge alga surface. The effect of pH using lyophilized microalgae was inconclusive due to experimental problems. Adsorption of fluoxetine by microalgae was described by a pseudo-second order kinetics at room temperature (20-24°C). Lyophilized microalgae showed a higher kinetic constant, being the ones that achieved equilibrium first (15 min) and removed 55% of the initial fluoxetine. The kinetic constants were 3.4×10-4±1.3×10-4 and 5.4×10-4±1.3×10-4 gALGAE/(μgFLX·min), respectively for live and lyophilized microalgae. The equilibrium was reached by living microalgae within 20 min, for which 26% of fluoxetine was removed. Equilibrium studies revealed that this system followed the Langmuir model (at 20-24°C). A higher adsorption capacity was observed for living microalgae, suggesting that other mechanisms (e.g. metabolic processes) besides adsorption may contribute to fluoxetine removal. The maximum capacities were 1.9×103±0.1×103 and 1.6×103±0.2×103 μgFLX/gALGAE for living and dead microalgae, respectively. Although the microalga Chlorella vulgaris shows lower adsorption capacities than other adsorbents present in literature, its application is still promising due to their low cost, sustainability and in the case of lyophilized alga it is not affected by the presence of toxicants.
id RCAP_dbc2f3b0f00a03aa45607b88255e403d
oai_identifier_str oai:recipp.ipp.pt:10400.22/14907
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgarisBiosorptionChlorella vulgarisFluoxetineMicroalgaePharmaceuticalBiossorçãoFármacoFluoxetinaMicroalgaPharmaceuticals end up into the influent of municipal wastewater treatment plants (WWTPs). through the sewage system and due to the inability of conventional treatments to remove them, they are found on the environment. This work is focused on the contribution to the development of sustainable and economical tertiary treatments to remove pharmaceuticals in WWTPs.This study was developed within the scope of the international collaborative project REWATER, developed under the “Water Challenges for a Changing World Joint Program Initiative” (Water JPI). The microalga Chlorella vulgaris, live and dead, was used as biosorbent to remove a pharmaceutical that is consumed worldwide, fluoxetine, from aqueous solutions. Infrared spectroscopy characterization was made to living and lyophilized microalgae with and without being in contact with fluoxetine. This characterization allowed to identify the main functional groups, such as hydroxyl, sulfonic and carboxylic, that are probably involved in the biosorption process. The pH at the point of zero charge was 7.0 and 5.8 for living and dead microalgae, respectively. The study of the pH influence was performed. In relation to living microalgae, pH dependency was observed. As the initial pH increased, uptake adsorption of microalgae decreased. The reduction on the capacity was related to the pKa. The most favourable conditions for biosorption occur in pH range between 7.0 and 9.8 due to the electrostatic attraction between the positively charged fluoxetine and the negative charge alga surface. The effect of pH using lyophilized microalgae was inconclusive due to experimental problems. Adsorption of fluoxetine by microalgae was described by a pseudo-second order kinetics at room temperature (20-24°C). Lyophilized microalgae showed a higher kinetic constant, being the ones that achieved equilibrium first (15 min) and removed 55% of the initial fluoxetine. The kinetic constants were 3.4×10-4±1.3×10-4 and 5.4×10-4±1.3×10-4 gALGAE/(μgFLX·min), respectively for live and lyophilized microalgae. The equilibrium was reached by living microalgae within 20 min, for which 26% of fluoxetine was removed. Equilibrium studies revealed that this system followed the Langmuir model (at 20-24°C). A higher adsorption capacity was observed for living microalgae, suggesting that other mechanisms (e.g. metabolic processes) besides adsorption may contribute to fluoxetine removal. The maximum capacities were 1.9×103±0.1×103 and 1.6×103±0.2×103 μgFLX/gALGAE for living and dead microalgae, respectively. Although the microalga Chlorella vulgaris shows lower adsorption capacities than other adsorbents present in literature, its application is still promising due to their low cost, sustainability and in the case of lyophilized alga it is not affected by the presence of toxicants.Os produtos farmacêuticos entram nas estações de tratamento de águas residuais (ETARs) através do sistema de esgotos e devido à incapacidade dos tratamentos convencionais de removê-los, estes entram no meio ambiente. Este trabalho pretende contribuir para o desenvolvimento de tratamentos terciários sustentáveis e económicos para remover fármacos em ETARs. Este estudo foi desenvolvido no âmbito do projeto colaborativo internacional REWATER, desenvolvido no âmbito da “Iniciativa Conjunta dos Desafios da Água para um Mundo em Mudança” (Water JPI). A microalga Chlorella vulgaris, viva e liofilizada, foi utilizada como biosorvente para remover um fármaco que é consumido mundialmente, fluoxetina, de soluções aquosas. A caracterização de espectroscopia infravermelho foi feita para microalgas vivas e liofilizadas com e sem contacto com fluoxetina. Essa caracterização permitiu identificar os principais grupos funcionais – como hidroxilo, sulfónico e carboxílico, que estão provavelmente envolvidos no processo de biossorção. O pH do ponto de carga zero foi de 7.0 e 5.8 para microalgas vivas e liofilizadas, respetivamente. O estudo da influência do pH também foi executado. Em relação às microalgas vivas, foi observada dependência do pH. À medida que o pH inicial aumentou, a biossorção pelas microalgas diminuiu. A redução na capacidade estava relacionada com o pKa. As condições mais favoráveis para a biossorção ocorreu numa gama de pH de 7.0 e 9.8 devido à atração electroestática entre a fluoxetina, carregada positivamente e a superfície da alga, carregada negativamente. O efeito do pH usando microalgas liofilizadas foi inconclusivo devido a problemas experimentais. Sugere-se repetir o estudo da influência do pH para tirar conclusões. A adsorção de fluoxetina pela microalga foi descrita pelo modelo cinético de pseudosegunda ordem, à temperatura ambiente (20-24ºC). As microalgas liofilizadas apresentaram uma constante cinética mais elevada, sendo as primeiras a atingir o equilíbrio (15 min) e removeram 55% da fluoxetina inicial. As constantes cinéticas foram 3.4×10-4±1.3×10-4 e 5.4×10-4±1.3×10-4 gALGAE/(μgFLX·min), para a microalga viva e liofilizada, respetivamente. O equilíbrio foi atingido para as microalgas vivas em 20 min com uma remoção de fluoxetina de 26%. Os estudos de equilíbrio revelaram que ambos os sistemas seguem o modelo de Langmuir (a 20-24ºC). Uma elevada capacidade de adsorção foi observada na alga viva, sugerindo que outros mecanismos (p.e. processos metabólicos), para além da adsorção, contribuíram para a remoção da fluoxetina. As capacidades máximas foram 1.9×103±0.1×103 e 1.6×103±0.2×103 μgFLX/gALGAE pelas microalgas vivas e mortas, respetivamente, à temperatura ambiente Embora a microalga Chlorella vulgaris mostre menor capacidade de adsorção do que outros adsorventes presentes na literatura, a sua aplicação é promissora devido ao seu baixo custo, sustentabilidade e, no caso de algas liofilizadas, não é afetada pela presença de substâncias tóxicas.Figueiredo, Sónia Adriana Ribeiro da CunhaRepositório Científico do Instituto Politécnico do PortoFernandes, Diana Alexandra Ferreira2022-10-28T00:31:06Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/14907TID:202295753enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:58:33Zoai:recipp.ipp.pt:10400.22/14907Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:34:42.720658Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgaris
title Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgaris
spellingShingle Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgaris
Fernandes, Diana Alexandra Ferreira
Biosorption
Chlorella vulgaris
Fluoxetine
Microalgae
Pharmaceutical
Biossorção
Fármaco
Fluoxetina
Microalga
title_short Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgaris
title_full Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgaris
title_fullStr Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgaris
title_full_unstemmed Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgaris
title_sort Remoção de fluoxetina por biossorção usando a microalga Chlorella vulgaris
author Fernandes, Diana Alexandra Ferreira
author_facet Fernandes, Diana Alexandra Ferreira
author_role author
dc.contributor.none.fl_str_mv Figueiredo, Sónia Adriana Ribeiro da Cunha
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Fernandes, Diana Alexandra Ferreira
dc.subject.por.fl_str_mv Biosorption
Chlorella vulgaris
Fluoxetine
Microalgae
Pharmaceutical
Biossorção
Fármaco
Fluoxetina
Microalga
topic Biosorption
Chlorella vulgaris
Fluoxetine
Microalgae
Pharmaceutical
Biossorção
Fármaco
Fluoxetina
Microalga
description Pharmaceuticals end up into the influent of municipal wastewater treatment plants (WWTPs). through the sewage system and due to the inability of conventional treatments to remove them, they are found on the environment. This work is focused on the contribution to the development of sustainable and economical tertiary treatments to remove pharmaceuticals in WWTPs.This study was developed within the scope of the international collaborative project REWATER, developed under the “Water Challenges for a Changing World Joint Program Initiative” (Water JPI). The microalga Chlorella vulgaris, live and dead, was used as biosorbent to remove a pharmaceutical that is consumed worldwide, fluoxetine, from aqueous solutions. Infrared spectroscopy characterization was made to living and lyophilized microalgae with and without being in contact with fluoxetine. This characterization allowed to identify the main functional groups, such as hydroxyl, sulfonic and carboxylic, that are probably involved in the biosorption process. The pH at the point of zero charge was 7.0 and 5.8 for living and dead microalgae, respectively. The study of the pH influence was performed. In relation to living microalgae, pH dependency was observed. As the initial pH increased, uptake adsorption of microalgae decreased. The reduction on the capacity was related to the pKa. The most favourable conditions for biosorption occur in pH range between 7.0 and 9.8 due to the electrostatic attraction between the positively charged fluoxetine and the negative charge alga surface. The effect of pH using lyophilized microalgae was inconclusive due to experimental problems. Adsorption of fluoxetine by microalgae was described by a pseudo-second order kinetics at room temperature (20-24°C). Lyophilized microalgae showed a higher kinetic constant, being the ones that achieved equilibrium first (15 min) and removed 55% of the initial fluoxetine. The kinetic constants were 3.4×10-4±1.3×10-4 and 5.4×10-4±1.3×10-4 gALGAE/(μgFLX·min), respectively for live and lyophilized microalgae. The equilibrium was reached by living microalgae within 20 min, for which 26% of fluoxetine was removed. Equilibrium studies revealed that this system followed the Langmuir model (at 20-24°C). A higher adsorption capacity was observed for living microalgae, suggesting that other mechanisms (e.g. metabolic processes) besides adsorption may contribute to fluoxetine removal. The maximum capacities were 1.9×103±0.1×103 and 1.6×103±0.2×103 μgFLX/gALGAE for living and dead microalgae, respectively. Although the microalga Chlorella vulgaris shows lower adsorption capacities than other adsorbents present in literature, its application is still promising due to their low cost, sustainability and in the case of lyophilized alga it is not affected by the presence of toxicants.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
2022-10-28T00:31:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/14907
TID:202295753
url http://hdl.handle.net/10400.22/14907
identifier_str_mv TID:202295753
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131438845526016