Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone

Detalhes bibliográficos
Autor(a) principal: Chichorro, Martim
Data de Publicação: 2008
Outros Autores: Pereira, M. Francisco, Diaz-Azpiroz, M., Williams, Ian S., Fernandez, C., Pin, Ch., Silva, Jose B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/2972
Resumo: The Late Ediacaran (c. 560–550 Ma) Série Negra sediments of the Évora–Aracena metamorphic belt, Ossa-Morena Zone, SW Iberian Massif, preserve a record of the erosion of an Avalonian–Cadomian magmatic arc and subsequent related turbiditic sedimentation. Detrital zircon from the Série Negra is characterized by predominantly Ediacaran and Cryogenian ages, with few Paleoproterozoic and Archean cores, and a marked lack of Grenvillian ages. These features, when combined with the metasediments' enrichment in LREE (La/Yb=14), negative Eu-anomalies, low 147Sm/144Nd values (0.121) and negative εNd550=−5.5, indicate that the protolith Série Negra sediments were derived from a continental magmatic arc. A period of Late Cadomian (ca. 560–540 Ma) tectonism was followed by an extended episode of widespread bimodal magmatism related to Cambrian (ca. 540–500 Ma) rifting. This tectonic inversion is expressed in the geological record by a regional Early Cambrian unconformity. SHRIMP zircon U–Th–Pb ages from four felsic orthogneisses from the Évora Massif record Cambrian (527±10 Ma, 522±5 Ma, 517±6 Ma and 505±5 Ma) crystallization ages for their igneous protoliths. This confirms the existence of widespread Lower Paleozoic igneous activity in the Ossa-Morena Zone: (i) a Lower Cambrian (ca. 535–515 Ma) igneous–felsic dominated–sedimentary complex (with calc-alkaline signature and associated carbonate and siliciclastic deposition), and (ii) a Middle Cambrian–?Ordovician (ca. 515–490 Ma) igneous–bimodal–sedimentary complex (with calc-alkaline and tholeiitic signatures and associated dominant siliciclastic deposition, but also carbonate sediments). The Cambrian felsic magmatism was characterized by negative Eu-anomalies, (La/Lu)N=0.8–11, 147Sm/144Nd=0.1289–0.1447 and εNd500 ranging from −1.5 to −0.8. A tendency towards peraluminous compositions suggests late fractionation, low degrees of partial melting, or the mixing of crustal and mantle-derived material in the magma source region. Some felsic rocks possibly represent the last residual melts of hightemperature, zircon-undersaturated mafic magmas later affected by crustal contamination, while others indicate partial melting of crustal metasediments variably contaminated by basaltic liquids. The transition from early felsic dominated to later more mafic magmatism suggests the gradual opening of the system to tholeiitic N–E-MORB products (ThN/TaNb1.0). The as yet undated (Cambrian–?Ordovician) E-MORB amphibolites have 147Sm/144Nd=0.1478–0.1797 and εNd500 values ranging from +6.4 to +7.3, while the N-MORB amphibolites have 147Sm/144Nd=0.1818–0.1979 and εNd500 values of +5.8 and +7.0, reaching a maximum of +9.1. In contrast, other amphibolites have a negative Ta-anomaly (1.35bThN/TaNb2.41) reminiscent of lavas from “orogenic” settings or alternatively, typical of crustally-contaminated within-plate magmas. These “VAB-like” amphibolites have 147Sm/144Nd values ranging from 0.1639 to 0.1946 and εNd500 values of +3.5 to +5.2, suggesting derivation by crustal assimilation processes. The subalkaline igneous precursors of the amphibolites were most likely generated in a rift setting by asthenospheric upwelling. These results strengthen the proposed geodynamic scenarios for the SW Iberian Massif by which Cadomian accretion gave rise to an ensialic rift that developed into a proto-oceanic basin and incipient spreading (opening of the Rheic Ocean?). A similar transition from a convergent to a divergent plate boundary during the Ediacaran to Cambrian–?Ordovician has also been reported in other segments of the northern Gondwana margin.
id RCAP_ec462cc60975e525079660d4391a6496
oai_identifier_str oai:dspace.uevora.pt:10174/2972
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling Cambrian ensialic rift-related magmatism in the Ossa-Morena ZoneCambrianEnsialic riftingOssa-Morena ZoneSHRIMP U–Th–Pb zircon datingRheic OceanThe Late Ediacaran (c. 560–550 Ma) Série Negra sediments of the Évora–Aracena metamorphic belt, Ossa-Morena Zone, SW Iberian Massif, preserve a record of the erosion of an Avalonian–Cadomian magmatic arc and subsequent related turbiditic sedimentation. Detrital zircon from the Série Negra is characterized by predominantly Ediacaran and Cryogenian ages, with few Paleoproterozoic and Archean cores, and a marked lack of Grenvillian ages. These features, when combined with the metasediments' enrichment in LREE (La/Yb=14), negative Eu-anomalies, low 147Sm/144Nd values (0.121) and negative εNd550=−5.5, indicate that the protolith Série Negra sediments were derived from a continental magmatic arc. A period of Late Cadomian (ca. 560–540 Ma) tectonism was followed by an extended episode of widespread bimodal magmatism related to Cambrian (ca. 540–500 Ma) rifting. This tectonic inversion is expressed in the geological record by a regional Early Cambrian unconformity. SHRIMP zircon U–Th–Pb ages from four felsic orthogneisses from the Évora Massif record Cambrian (527±10 Ma, 522±5 Ma, 517±6 Ma and 505±5 Ma) crystallization ages for their igneous protoliths. This confirms the existence of widespread Lower Paleozoic igneous activity in the Ossa-Morena Zone: (i) a Lower Cambrian (ca. 535–515 Ma) igneous–felsic dominated–sedimentary complex (with calc-alkaline signature and associated carbonate and siliciclastic deposition), and (ii) a Middle Cambrian–?Ordovician (ca. 515–490 Ma) igneous–bimodal–sedimentary complex (with calc-alkaline and tholeiitic signatures and associated dominant siliciclastic deposition, but also carbonate sediments). The Cambrian felsic magmatism was characterized by negative Eu-anomalies, (La/Lu)N=0.8–11, 147Sm/144Nd=0.1289–0.1447 and εNd500 ranging from −1.5 to −0.8. A tendency towards peraluminous compositions suggests late fractionation, low degrees of partial melting, or the mixing of crustal and mantle-derived material in the magma source region. Some felsic rocks possibly represent the last residual melts of hightemperature, zircon-undersaturated mafic magmas later affected by crustal contamination, while others indicate partial melting of crustal metasediments variably contaminated by basaltic liquids. The transition from early felsic dominated to later more mafic magmatism suggests the gradual opening of the system to tholeiitic N–E-MORB products (ThN/TaNb1.0). The as yet undated (Cambrian–?Ordovician) E-MORB amphibolites have 147Sm/144Nd=0.1478–0.1797 and εNd500 values ranging from +6.4 to +7.3, while the N-MORB amphibolites have 147Sm/144Nd=0.1818–0.1979 and εNd500 values of +5.8 and +7.0, reaching a maximum of +9.1. In contrast, other amphibolites have a negative Ta-anomaly (1.35bThN/TaNb2.41) reminiscent of lavas from “orogenic” settings or alternatively, typical of crustally-contaminated within-plate magmas. These “VAB-like” amphibolites have 147Sm/144Nd values ranging from 0.1639 to 0.1946 and εNd500 values of +3.5 to +5.2, suggesting derivation by crustal assimilation processes. The subalkaline igneous precursors of the amphibolites were most likely generated in a rift setting by asthenospheric upwelling. These results strengthen the proposed geodynamic scenarios for the SW Iberian Massif by which Cadomian accretion gave rise to an ensialic rift that developed into a proto-oceanic basin and incipient spreading (opening of the Rheic Ocean?). A similar transition from a convergent to a divergent plate boundary during the Ediacaran to Cambrian–?Ordovician has also been reported in other segments of the northern Gondwana margin.2011-12-21T18:24:27Z2011-12-212008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/2972http://hdl.handle.net/10174/2972eng91-113461Tectonophysicsma.chichorro@fct.unl.ptndndndndndnd250Chichorro, MartimPereira, M. FranciscoDiaz-Azpiroz, M.Williams, Ian S.Fernandez, C.Pin, Ch.Silva, Jose B.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-08T03:46:55ZPortal AgregadorONG
dc.title.none.fl_str_mv Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone
title Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone
spellingShingle Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone
Chichorro, Martim
Cambrian
Ensialic rifting
Ossa-Morena Zone
SHRIMP U–Th–Pb zircon dating
Rheic Ocean
title_short Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone
title_full Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone
title_fullStr Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone
title_full_unstemmed Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone
title_sort Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone
author Chichorro, Martim
author_facet Chichorro, Martim
Pereira, M. Francisco
Diaz-Azpiroz, M.
Williams, Ian S.
Fernandez, C.
Pin, Ch.
Silva, Jose B.
author_role author
author2 Pereira, M. Francisco
Diaz-Azpiroz, M.
Williams, Ian S.
Fernandez, C.
Pin, Ch.
Silva, Jose B.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Chichorro, Martim
Pereira, M. Francisco
Diaz-Azpiroz, M.
Williams, Ian S.
Fernandez, C.
Pin, Ch.
Silva, Jose B.
dc.subject.por.fl_str_mv Cambrian
Ensialic rifting
Ossa-Morena Zone
SHRIMP U–Th–Pb zircon dating
Rheic Ocean
topic Cambrian
Ensialic rifting
Ossa-Morena Zone
SHRIMP U–Th–Pb zircon dating
Rheic Ocean
description The Late Ediacaran (c. 560–550 Ma) Série Negra sediments of the Évora–Aracena metamorphic belt, Ossa-Morena Zone, SW Iberian Massif, preserve a record of the erosion of an Avalonian–Cadomian magmatic arc and subsequent related turbiditic sedimentation. Detrital zircon from the Série Negra is characterized by predominantly Ediacaran and Cryogenian ages, with few Paleoproterozoic and Archean cores, and a marked lack of Grenvillian ages. These features, when combined with the metasediments' enrichment in LREE (La/Yb=14), negative Eu-anomalies, low 147Sm/144Nd values (0.121) and negative εNd550=−5.5, indicate that the protolith Série Negra sediments were derived from a continental magmatic arc. A period of Late Cadomian (ca. 560–540 Ma) tectonism was followed by an extended episode of widespread bimodal magmatism related to Cambrian (ca. 540–500 Ma) rifting. This tectonic inversion is expressed in the geological record by a regional Early Cambrian unconformity. SHRIMP zircon U–Th–Pb ages from four felsic orthogneisses from the Évora Massif record Cambrian (527±10 Ma, 522±5 Ma, 517±6 Ma and 505±5 Ma) crystallization ages for their igneous protoliths. This confirms the existence of widespread Lower Paleozoic igneous activity in the Ossa-Morena Zone: (i) a Lower Cambrian (ca. 535–515 Ma) igneous–felsic dominated–sedimentary complex (with calc-alkaline signature and associated carbonate and siliciclastic deposition), and (ii) a Middle Cambrian–?Ordovician (ca. 515–490 Ma) igneous–bimodal–sedimentary complex (with calc-alkaline and tholeiitic signatures and associated dominant siliciclastic deposition, but also carbonate sediments). The Cambrian felsic magmatism was characterized by negative Eu-anomalies, (La/Lu)N=0.8–11, 147Sm/144Nd=0.1289–0.1447 and εNd500 ranging from −1.5 to −0.8. A tendency towards peraluminous compositions suggests late fractionation, low degrees of partial melting, or the mixing of crustal and mantle-derived material in the magma source region. Some felsic rocks possibly represent the last residual melts of hightemperature, zircon-undersaturated mafic magmas later affected by crustal contamination, while others indicate partial melting of crustal metasediments variably contaminated by basaltic liquids. The transition from early felsic dominated to later more mafic magmatism suggests the gradual opening of the system to tholeiitic N–E-MORB products (ThN/TaNb1.0). The as yet undated (Cambrian–?Ordovician) E-MORB amphibolites have 147Sm/144Nd=0.1478–0.1797 and εNd500 values ranging from +6.4 to +7.3, while the N-MORB amphibolites have 147Sm/144Nd=0.1818–0.1979 and εNd500 values of +5.8 and +7.0, reaching a maximum of +9.1. In contrast, other amphibolites have a negative Ta-anomaly (1.35bThN/TaNb2.41) reminiscent of lavas from “orogenic” settings or alternatively, typical of crustally-contaminated within-plate magmas. These “VAB-like” amphibolites have 147Sm/144Nd values ranging from 0.1639 to 0.1946 and εNd500 values of +3.5 to +5.2, suggesting derivation by crustal assimilation processes. The subalkaline igneous precursors of the amphibolites were most likely generated in a rift setting by asthenospheric upwelling. These results strengthen the proposed geodynamic scenarios for the SW Iberian Massif by which Cadomian accretion gave rise to an ensialic rift that developed into a proto-oceanic basin and incipient spreading (opening of the Rheic Ocean?). A similar transition from a convergent to a divergent plate boundary during the Ediacaran to Cambrian–?Ordovician has also been reported in other segments of the northern Gondwana margin.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01T00:00:00Z
2011-12-21T18:24:27Z
2011-12-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/2972
http://hdl.handle.net/10174/2972
url http://hdl.handle.net/10174/2972
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 91-113
461
Tectonophysics
ma.chichorro@fct.unl.pt
nd
nd
nd
nd
nd
nd
250
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777304572491988992