Screening innate immunotherapy strategies in zebrafish xenograft models

Detalhes bibliográficos
Autor(a) principal: Oliveira, Inês Jesus
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/162955
Resumo: Abstract Immunotherapy, particularly immune checkpoint blockers (ICB), constitute an important breakthrough in the treatment of cancer. Nevertheless, the success of these therapies is quite limited, possibly due to additional innate immune-suppressive mechanisms present in the tumour microenvironment (TME). To increase response rates, it is critical to discover new molecules that can revert this immune-suppression and fully activate the immune system to fight cancer. During the development of the zebrafish xenograft model for drug testing and personalized medicine, my host lab discovered that different human cancer cell lines exhibit distinct clearance profiles. Indeed, they found that while some cancer cells can evade the host innate immunity and are barely eliminated (“progressors”), others are efficiently cleared by the host in just four days (“regressors”). This discovery opened the opportunity to screen a 774-compound Food and Drug Administration (FDA)- approved Drug Library in “progressor” zebrafish xenograft models, to identify compounds capable of enhancing innate-tumour clearance. Ultimately, the idea is to combine these compounds with ICB, thus harnessing both arms of immunity against cancer and possibly increasing the response rates of current immunotherapies. This last step will imply the use of mice with a functional adaptive immune system, and for that purpose, cancer mouse models, such as MC38 colorectal cancer (CRC), E0771 breast cancer (BC), and B16-F10 melanoma, will be employed. These models have been extensively used to find molecules to sensitize tumours to ICB, as they only respond to ICBs when combined with compounds that increase immunogenicity or convert the immune-suppressive TME into a permissive one. My host lab has already screened more than half of the library, with 560 compounds tested in human CRC (resulting in 14 validated hits) and 443 in human breast cancer (15 validated hits). In order to speed up the drug selection process and minimize unnecessary costs and animals in future pre-clinical mice studies, my work was focused on re-screening the top hit compounds in zebrafish injected with cancer cell lines derived from the aforementioned mouse models. I started by generating and characterizing MC38_CRC, E0771_BC and B16-F10_melanoma zebrafish xenograft models, and results suggest that all of them are “progressors”, although they present distinct clearance profiles and induce different immune microenvironments in the host. Also, MC38_CRC and E0771_BC revealed to be sensitive to the three tested drugs (Scopolamine hydrobromide, Tiotropium Bromide, and Methyldopa Sesquihydrate), whose effect was shown to be dependent on macrophages. While Scopolamine hydrobromide induced a slight increase in macrophage and neutrophil infiltration in the TME; the treatment with Tiotropium Bromide resulted in an increase in pro-inflammatory and phagocytic macrophages, and its combination with Pembrolizumab immunotherapy boosted tumour response to the treatment. Collectively, my results highlight the potential of zebrafish xenograft model as an in vivo platform for drug screenings, particularly, for identifying innate immunomodulators that can boost innate-tumour clearance, and possibly complement adaptive immunotherapies in the future.
id RCAP_ef4cd0c02735d39ce63c468ce75998df
oai_identifier_str oai:run.unl.pt:10362/162955
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Screening innate immunotherapy strategies in zebrafish xenograft modelsImmunotherapyXenograft ModelsCiências MédicasAbstract Immunotherapy, particularly immune checkpoint blockers (ICB), constitute an important breakthrough in the treatment of cancer. Nevertheless, the success of these therapies is quite limited, possibly due to additional innate immune-suppressive mechanisms present in the tumour microenvironment (TME). To increase response rates, it is critical to discover new molecules that can revert this immune-suppression and fully activate the immune system to fight cancer. During the development of the zebrafish xenograft model for drug testing and personalized medicine, my host lab discovered that different human cancer cell lines exhibit distinct clearance profiles. Indeed, they found that while some cancer cells can evade the host innate immunity and are barely eliminated (“progressors”), others are efficiently cleared by the host in just four days (“regressors”). This discovery opened the opportunity to screen a 774-compound Food and Drug Administration (FDA)- approved Drug Library in “progressor” zebrafish xenograft models, to identify compounds capable of enhancing innate-tumour clearance. Ultimately, the idea is to combine these compounds with ICB, thus harnessing both arms of immunity against cancer and possibly increasing the response rates of current immunotherapies. This last step will imply the use of mice with a functional adaptive immune system, and for that purpose, cancer mouse models, such as MC38 colorectal cancer (CRC), E0771 breast cancer (BC), and B16-F10 melanoma, will be employed. These models have been extensively used to find molecules to sensitize tumours to ICB, as they only respond to ICBs when combined with compounds that increase immunogenicity or convert the immune-suppressive TME into a permissive one. My host lab has already screened more than half of the library, with 560 compounds tested in human CRC (resulting in 14 validated hits) and 443 in human breast cancer (15 validated hits). In order to speed up the drug selection process and minimize unnecessary costs and animals in future pre-clinical mice studies, my work was focused on re-screening the top hit compounds in zebrafish injected with cancer cell lines derived from the aforementioned mouse models. I started by generating and characterizing MC38_CRC, E0771_BC and B16-F10_melanoma zebrafish xenograft models, and results suggest that all of them are “progressors”, although they present distinct clearance profiles and induce different immune microenvironments in the host. Also, MC38_CRC and E0771_BC revealed to be sensitive to the three tested drugs (Scopolamine hydrobromide, Tiotropium Bromide, and Methyldopa Sesquihydrate), whose effect was shown to be dependent on macrophages. While Scopolamine hydrobromide induced a slight increase in macrophage and neutrophil infiltration in the TME; the treatment with Tiotropium Bromide resulted in an increase in pro-inflammatory and phagocytic macrophages, and its combination with Pembrolizumab immunotherapy boosted tumour response to the treatment. Collectively, my results highlight the potential of zebrafish xenograft model as an in vivo platform for drug screenings, particularly, for identifying innate immunomodulators that can boost innate-tumour clearance, and possibly complement adaptive immunotherapies in the future.Resumo Os inibidores de checkpoints imunitários (ICB) representam um importante avanço no tratamento oncológico. No entanto, o sucesso destas terapias é ainda limitado apenas a alguns doentes, o que pode ser explicado pela presença de mecanismos adicionais de imunossupressão no microambiente tumoral. De forma a aumentar as taxas de resposta a estes tratamentos, é essencial descobrir novas moléculas que possam ajudar a superar fenómenos de imunossupressão, ativando por completo o sistema imunitário na luta contra o cancro. Durante o desenvolvimento do modelo de xenógrafo de peixe-zebra para testagem de fármacos e medicina personalizada, o laboratório descobriu que diferentes linhas celulares de cancro exibem diferentes perfis de rejeição tumoral. Enquanto umas linhas celulares conseguem evadir a imunidade inata do hospedeiro e são pouco eliminadas (“progressoras”), outras são eficazmente eliminadas pelo sistema imune inato do hospedeiro em apenas quatro dias (“regressoras”). Esta descoberta proporcionou uma oportunidade para testar uma biblioteca de 774 compostos de baixo peso molecular, aprovada pela Food and Drug Administration (FDA). A ideia é, utilizando modelos “progressores” (que conseguem evadir o sistema imune inato do peixe-zebra), descobrir compostos capazes de induzir a eliminação do tumor. Por fim, estes compostos serão combinados com ICB, fazendo assim uso dos dois componentes do sistema imunitário (inato e adaptativo) para ativar a eliminação tumoral e, eventualmente, aumentar as taxas de resposta a imunoterapias atualmente utilizadas em contexto clínico. No entanto, para validar a eficácia da resposta dos ICB com os compostos selecionados, é imperativo o uso de ratinhos com um sistema imune adaptativo funcional e, para esse propósito, em vez de modelos celulares humanos, será necessário usar modelos murinos de cancro tais como: MC38 (cancro colorectal), E0771 (cancro da mama), e B16-F10 (melanoma). Estes modelos murinos têm sido largamente usados para descobrir moléculas que aumentem a sensibilidade dos tumores aos ICB. Isto deve-se ao facto de os mesmos apenas responderem aos ICB quando combinados com compostos que aumentem a sua imunogenicidade ou que convertam um microambiente tumoral imunossupressor num mais “imuno-permissivo”. O meu laboratório já testou mais de metade da biblioteca, com 560 compostos testados em cancro colorectal humano (resultando em 14 hits validados) e 443 em cancro da mama humano (15 hits validados). De forma a acelerar o processo de seleção dos fármacos, e para minimizar custo e número de ratinhos usados nos ensaios pré-clínicos, o meu trabalho consistiu em re-testar alguns destes hits em peixes-zebra injetados com as linhas de cancro de murinos já mencionados. Comecei por gerar e caracterizar os modelos xenógrafos de peixe-zebra (MC38_CRC, E0771_BC e B16-F10_melanoma). Os resultados sugerem que, apesar de todos serem considerados modelos “progressores”, com baixa eliminação tumoral basal, têm comportamento diferentes, e induzem distintos microambientes imunes no hospedeiro. Os tumores de MC38_CRC e E0771_BC revelaram sensibilidade aos compostos testados (Scopolamine hydrobromide, Tiotropium Bromide, e Methyldopa Sesquihydrate), cujos efeitos foram dependentes da presença de macrófagos. Enquanto o tratamento com Scopolamine hydrobromide induziu um ligeiro aumento na infiltração de macrófagos e neutrófilos no microambiente tumoral, o tratamento com Tiotropium Bromide resultou num aumento de macrófagos pró-inflamatórios e fagocíticos. A combinação deste último composto com Pembrolizumab (anticorpo monoclonal contra recetores PD-1) aumentou, ainda, o efeito anti-tumoral de uma forma significativa. De um modo geral, os nossos resultados destacam o potencial do modelo xenógrafo de peixe-zebra na descoberta de novos compostos imunomoduladores inatos que consigam aumentar a rejeição tumoral e complementar imunoterapias já usadas em contexto clínico.Fior, RitaLopes, SusanaRUNOliveira, Inês Jesus2023-11-212026-11-21T00:00:00Z2023-11-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/162955TID:203496604enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:46:01Zoai:run.unl.pt:10362/162955Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:10.703016Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Screening innate immunotherapy strategies in zebrafish xenograft models
title Screening innate immunotherapy strategies in zebrafish xenograft models
spellingShingle Screening innate immunotherapy strategies in zebrafish xenograft models
Oliveira, Inês Jesus
Immunotherapy
Xenograft Models
Ciências Médicas
title_short Screening innate immunotherapy strategies in zebrafish xenograft models
title_full Screening innate immunotherapy strategies in zebrafish xenograft models
title_fullStr Screening innate immunotherapy strategies in zebrafish xenograft models
title_full_unstemmed Screening innate immunotherapy strategies in zebrafish xenograft models
title_sort Screening innate immunotherapy strategies in zebrafish xenograft models
author Oliveira, Inês Jesus
author_facet Oliveira, Inês Jesus
author_role author
dc.contributor.none.fl_str_mv Fior, Rita
Lopes, Susana
RUN
dc.contributor.author.fl_str_mv Oliveira, Inês Jesus
dc.subject.por.fl_str_mv Immunotherapy
Xenograft Models
Ciências Médicas
topic Immunotherapy
Xenograft Models
Ciências Médicas
description Abstract Immunotherapy, particularly immune checkpoint blockers (ICB), constitute an important breakthrough in the treatment of cancer. Nevertheless, the success of these therapies is quite limited, possibly due to additional innate immune-suppressive mechanisms present in the tumour microenvironment (TME). To increase response rates, it is critical to discover new molecules that can revert this immune-suppression and fully activate the immune system to fight cancer. During the development of the zebrafish xenograft model for drug testing and personalized medicine, my host lab discovered that different human cancer cell lines exhibit distinct clearance profiles. Indeed, they found that while some cancer cells can evade the host innate immunity and are barely eliminated (“progressors”), others are efficiently cleared by the host in just four days (“regressors”). This discovery opened the opportunity to screen a 774-compound Food and Drug Administration (FDA)- approved Drug Library in “progressor” zebrafish xenograft models, to identify compounds capable of enhancing innate-tumour clearance. Ultimately, the idea is to combine these compounds with ICB, thus harnessing both arms of immunity against cancer and possibly increasing the response rates of current immunotherapies. This last step will imply the use of mice with a functional adaptive immune system, and for that purpose, cancer mouse models, such as MC38 colorectal cancer (CRC), E0771 breast cancer (BC), and B16-F10 melanoma, will be employed. These models have been extensively used to find molecules to sensitize tumours to ICB, as they only respond to ICBs when combined with compounds that increase immunogenicity or convert the immune-suppressive TME into a permissive one. My host lab has already screened more than half of the library, with 560 compounds tested in human CRC (resulting in 14 validated hits) and 443 in human breast cancer (15 validated hits). In order to speed up the drug selection process and minimize unnecessary costs and animals in future pre-clinical mice studies, my work was focused on re-screening the top hit compounds in zebrafish injected with cancer cell lines derived from the aforementioned mouse models. I started by generating and characterizing MC38_CRC, E0771_BC and B16-F10_melanoma zebrafish xenograft models, and results suggest that all of them are “progressors”, although they present distinct clearance profiles and induce different immune microenvironments in the host. Also, MC38_CRC and E0771_BC revealed to be sensitive to the three tested drugs (Scopolamine hydrobromide, Tiotropium Bromide, and Methyldopa Sesquihydrate), whose effect was shown to be dependent on macrophages. While Scopolamine hydrobromide induced a slight increase in macrophage and neutrophil infiltration in the TME; the treatment with Tiotropium Bromide resulted in an increase in pro-inflammatory and phagocytic macrophages, and its combination with Pembrolizumab immunotherapy boosted tumour response to the treatment. Collectively, my results highlight the potential of zebrafish xenograft model as an in vivo platform for drug screenings, particularly, for identifying innate immunomodulators that can boost innate-tumour clearance, and possibly complement adaptive immunotherapies in the future.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-21
2023-11-21T00:00:00Z
2026-11-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/162955
TID:203496604
url http://hdl.handle.net/10362/162955
identifier_str_mv TID:203496604
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138171744681984