Evaluating COVID-19 in Portugal: Bootstrap confidence interval

Detalhes bibliográficos
Autor(a) principal: Tedim, Sofia
Data de Publicação: 2023
Outros Autores: Afreixo, Vera, Felgueiras, Miguel, Leitão, Rui Pedro, Pinheiro, Sofia J., Silva, Cristiana J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/40337
Resumo: In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.
id RCAP_f42a0629992d11e945fb1f14ac6a0083
oai_identifier_str oai:ria.ua.pt:10773/40337
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluating COVID-19 in Portugal: Bootstrap confidence intervalCOVID-19Bootstrap confidence intervalSAIRP modelCentre of Portugal regionIn this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.AIMS Press2024-01-29T16:40:47Z2023-12-01T00:00:00Z2023-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40337eng2473-698810.3934/math.2024136Tedim, SofiaAfreixo, VeraFelgueiras, MiguelLeitão, Rui PedroPinheiro, Sofia J.Silva, Cristiana J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:44Zoai:ria.ua.pt:10773/40337Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:17.690259Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title Evaluating COVID-19 in Portugal: Bootstrap confidence interval
spellingShingle Evaluating COVID-19 in Portugal: Bootstrap confidence interval
Tedim, Sofia
COVID-19
Bootstrap confidence interval
SAIRP model
Centre of Portugal region
title_short Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title_full Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title_fullStr Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title_full_unstemmed Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title_sort Evaluating COVID-19 in Portugal: Bootstrap confidence interval
author Tedim, Sofia
author_facet Tedim, Sofia
Afreixo, Vera
Felgueiras, Miguel
Leitão, Rui Pedro
Pinheiro, Sofia J.
Silva, Cristiana J.
author_role author
author2 Afreixo, Vera
Felgueiras, Miguel
Leitão, Rui Pedro
Pinheiro, Sofia J.
Silva, Cristiana J.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Tedim, Sofia
Afreixo, Vera
Felgueiras, Miguel
Leitão, Rui Pedro
Pinheiro, Sofia J.
Silva, Cristiana J.
dc.subject.por.fl_str_mv COVID-19
Bootstrap confidence interval
SAIRP model
Centre of Portugal region
topic COVID-19
Bootstrap confidence interval
SAIRP model
Centre of Portugal region
description In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-01T00:00:00Z
2023-12
2024-01-29T16:40:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/40337
url http://hdl.handle.net/10773/40337
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2473-6988
10.3934/math.2024136
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv AIMS Press
publisher.none.fl_str_mv AIMS Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137752842764288