Evaluating COVID-19 in Portugal: Bootstrap confidence interval
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/40337 |
Resumo: | In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks. |
id |
RCAP_f42a0629992d11e945fb1f14ac6a0083 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/40337 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Evaluating COVID-19 in Portugal: Bootstrap confidence intervalCOVID-19Bootstrap confidence intervalSAIRP modelCentre of Portugal regionIn this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.AIMS Press2024-01-29T16:40:47Z2023-12-01T00:00:00Z2023-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40337eng2473-698810.3934/math.2024136Tedim, SofiaAfreixo, VeraFelgueiras, MiguelLeitão, Rui PedroPinheiro, Sofia J.Silva, Cristiana J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:44Zoai:ria.ua.pt:10773/40337Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:17.690259Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
title |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
spellingShingle |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval Tedim, Sofia COVID-19 Bootstrap confidence interval SAIRP model Centre of Portugal region |
title_short |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
title_full |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
title_fullStr |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
title_full_unstemmed |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
title_sort |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
author |
Tedim, Sofia |
author_facet |
Tedim, Sofia Afreixo, Vera Felgueiras, Miguel Leitão, Rui Pedro Pinheiro, Sofia J. Silva, Cristiana J. |
author_role |
author |
author2 |
Afreixo, Vera Felgueiras, Miguel Leitão, Rui Pedro Pinheiro, Sofia J. Silva, Cristiana J. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Tedim, Sofia Afreixo, Vera Felgueiras, Miguel Leitão, Rui Pedro Pinheiro, Sofia J. Silva, Cristiana J. |
dc.subject.por.fl_str_mv |
COVID-19 Bootstrap confidence interval SAIRP model Centre of Portugal region |
topic |
COVID-19 Bootstrap confidence interval SAIRP model Centre of Portugal region |
description |
In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-01T00:00:00Z 2023-12 2024-01-29T16:40:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/40337 |
url |
http://hdl.handle.net/10773/40337 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2473-6988 10.3934/math.2024136 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
AIMS Press |
publisher.none.fl_str_mv |
AIMS Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137752842764288 |