Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications

Detalhes bibliográficos
Autor(a) principal: Lueks, W
Data de Publicação: 2021
Outros Autores: Benzler, J, Bogdanov, D, Kirchner, G, Lucas, R, Oliveira, R, Preneel, B, Salathé, M, Troncoso, C, von Wyl, V
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/149629
Resumo: Digital proximity tracing (DPT) for Sars-CoV-2 pandemic mitigation is a complex intervention with the primary goal to notify app users about possible risk exposures to infected persons. DPT not only relies on the technical functioning of the proximity tracing application and its backend server, but also on seamless integration of health system processes such as laboratory testing, communication of results (and their validation), generation of notification codes, manual contact tracing, and management of app-notified users. Policymakers and DPT operators need to know whether their system works as expected in terms of speed or yield (performance) and whether DPT is making an effective contribution to pandemic mitigation (also in comparison to and beyond established mitigation measures, particularly manual contact tracing). Thereby, performance and effectiveness are not to be confused. Not only are there conceptual differences but also diverse data requirements. For example, comparative effectiveness measures may require information generated outside the DPT system, e.g., from manual contact tracing. This article describes differences between performance and effectiveness measures and attempts to develop a terminology and classification system for DPT evaluation. We discuss key aspects for critical assessments of whether the integration of additional data measurements into DPT apps may facilitate understanding of performance and effectiveness of planned and deployed DPT apps. Therefore, the terminology and a classification system may offer some guidance to DPT system operators regarding which measurements to prioritize. DPT developers and operators may also make conscious decisions to integrate measures for epidemic monitoring but should be aware that this introduces a secondary purpose to DPT. Ultimately, the integration of further information (e.g., regarding exact exposure time) into DPT involves a trade-off between data granularity and linkage on the one hand, and privacy on the other. More data may lead to better epidemiological information but may also increase the privacy risks associated with the system, and thus decrease public DPT acceptance. Decision-makers should be aware of the trade-off and take it into account when planning and developing DPT systems or intending to assess the added value of DPT relative to the existing contact tracing systems.
id RCAP_f65951cff1f038300eb701b36e25593b
oai_identifier_str oai:repositorio-aberto.up.pt:10216/149629
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing ApplicationsDigital proximity tracing (DPT) for Sars-CoV-2 pandemic mitigation is a complex intervention with the primary goal to notify app users about possible risk exposures to infected persons. DPT not only relies on the technical functioning of the proximity tracing application and its backend server, but also on seamless integration of health system processes such as laboratory testing, communication of results (and their validation), generation of notification codes, manual contact tracing, and management of app-notified users. Policymakers and DPT operators need to know whether their system works as expected in terms of speed or yield (performance) and whether DPT is making an effective contribution to pandemic mitigation (also in comparison to and beyond established mitigation measures, particularly manual contact tracing). Thereby, performance and effectiveness are not to be confused. Not only are there conceptual differences but also diverse data requirements. For example, comparative effectiveness measures may require information generated outside the DPT system, e.g., from manual contact tracing. This article describes differences between performance and effectiveness measures and attempts to develop a terminology and classification system for DPT evaluation. We discuss key aspects for critical assessments of whether the integration of additional data measurements into DPT apps may facilitate understanding of performance and effectiveness of planned and deployed DPT apps. Therefore, the terminology and a classification system may offer some guidance to DPT system operators regarding which measurements to prioritize. DPT developers and operators may also make conscious decisions to integrate measures for epidemic monitoring but should be aware that this introduces a secondary purpose to DPT. Ultimately, the integration of further information (e.g., regarding exact exposure time) into DPT involves a trade-off between data granularity and linkage on the one hand, and privacy on the other. More data may lead to better epidemiological information but may also increase the privacy risks associated with the system, and thus decrease public DPT acceptance. Decision-makers should be aware of the trade-off and take it into account when planning and developing DPT systems or intending to assess the added value of DPT relative to the existing contact tracing systems.Frontiers Media20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/149629eng2673-253X10.3389/fdgth.2021.677929Lueks, WBenzler, JBogdanov, DKirchner, GLucas, ROliveira, RPreneel, BSalathé, MTroncoso, Cvon Wyl, Vinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:30:29Zoai:repositorio-aberto.up.pt:10216/149629Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:21:37.437477Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications
title Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications
spellingShingle Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications
Lueks, W
title_short Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications
title_full Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications
title_fullStr Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications
title_full_unstemmed Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications
title_sort Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications
author Lueks, W
author_facet Lueks, W
Benzler, J
Bogdanov, D
Kirchner, G
Lucas, R
Oliveira, R
Preneel, B
Salathé, M
Troncoso, C
von Wyl, V
author_role author
author2 Benzler, J
Bogdanov, D
Kirchner, G
Lucas, R
Oliveira, R
Preneel, B
Salathé, M
Troncoso, C
von Wyl, V
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Lueks, W
Benzler, J
Bogdanov, D
Kirchner, G
Lucas, R
Oliveira, R
Preneel, B
Salathé, M
Troncoso, C
von Wyl, V
description Digital proximity tracing (DPT) for Sars-CoV-2 pandemic mitigation is a complex intervention with the primary goal to notify app users about possible risk exposures to infected persons. DPT not only relies on the technical functioning of the proximity tracing application and its backend server, but also on seamless integration of health system processes such as laboratory testing, communication of results (and their validation), generation of notification codes, manual contact tracing, and management of app-notified users. Policymakers and DPT operators need to know whether their system works as expected in terms of speed or yield (performance) and whether DPT is making an effective contribution to pandemic mitigation (also in comparison to and beyond established mitigation measures, particularly manual contact tracing). Thereby, performance and effectiveness are not to be confused. Not only are there conceptual differences but also diverse data requirements. For example, comparative effectiveness measures may require information generated outside the DPT system, e.g., from manual contact tracing. This article describes differences between performance and effectiveness measures and attempts to develop a terminology and classification system for DPT evaluation. We discuss key aspects for critical assessments of whether the integration of additional data measurements into DPT apps may facilitate understanding of performance and effectiveness of planned and deployed DPT apps. Therefore, the terminology and a classification system may offer some guidance to DPT system operators regarding which measurements to prioritize. DPT developers and operators may also make conscious decisions to integrate measures for epidemic monitoring but should be aware that this introduces a secondary purpose to DPT. Ultimately, the integration of further information (e.g., regarding exact exposure time) into DPT involves a trade-off between data granularity and linkage on the one hand, and privacy on the other. More data may lead to better epidemiological information but may also increase the privacy risks associated with the system, and thus decrease public DPT acceptance. Decision-makers should be aware of the trade-off and take it into account when planning and developing DPT systems or intending to assess the added value of DPT relative to the existing contact tracing systems.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/149629
url https://hdl.handle.net/10216/149629
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2673-253X
10.3389/fdgth.2021.677929
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135516642246657