Deep Adversarial Frameworks for Visually Explainable Periocular Recognition

Detalhes bibliográficos
Autor(a) principal: Brito, João Pedro da Cruz
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/11850
Resumo: Machine Learning (ML) models have pushed state­of­the­art performance closer to (and even beyond) human level. However, the core of such algorithms is usually latent and hardly understandable. Thus, the field of Explainability focuses on researching and adopting techniques that can explain the reasons that support a model’s predictions. Such explanations of the decision­making process would help to build trust between said model and the human(s) using it. An explainable system also allows for better debugging, during the training phase, and fixing, upon deployment. But why should a developer devote time and effort into refactoring or rethinking Artificial Intelligence (AI) systems, to make them more transparent? Don’t they work just fine? Despite the temptation to answer ”yes”, are we really considering the cases where these systems fail? Are we assuming that ”almost perfect” accuracy is good enough? What if, some of the cases where these systems get it right, were just a small margin away from a complete miss? Does that even matter? Considering the ever­growing presence of ML models in crucial areas like forensics, security and healthcare services, it clearly does. Motivating these concerns is the fact that powerful systems often operate as black­boxes, hiding the core reasoning underneath layers of abstraction [Gue]. In this scenario, there could be some seriously negative outcomes if opaque algorithms gamble on the presence of tumours in X­ray images or the way autonomous vehicles behave in traffic. It becomes clear, then, that incorporating explainability with AI is imperative. More recently, the politicians have addressed this urgency through the General Data Protection Regulation (GDPR) [Com18]. With this document, the European Union (EU) brings forward several important concepts, amongst which, the ”right to an explanation”. The definition and scope are still subject to debate [MF17], but these are definite strides to formally regulate the explainable depth of autonomous systems. Based on the preface above, this work describes a periocular recognition framework that not only performs biometric recognition but also provides clear representations of the features/regions that support a prediction. Being particularly designed to explain non­match (”impostors”) decisions, our solution uses adversarial generative techniques to synthesise a large set of ”genuine” image pairs, from where the most similar elements with respect to a query are retrieved. Then, assuming the alignment between the query/retrieved pairs, the element­wise differences between the query and a weighted average of the retrieved elements yields a visual explanation of the regions in the query pair that would have to be different to transform it into a ”genuine” pair. Our quantitative and qualitative experiments validate the proposed solution, yielding recognition rates that are similar to the state­of­the­art, while adding visually pleasing explanations.
id RCAP_fc98f8af43d3ecd32b6268ca2ae76327
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/11850
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deep Adversarial Frameworks for Visually Explainable Periocular RecognitionArtificial IntelligenceConvolutional Neural NetworksDeep LearningExplainabilityGenerative Adversarial NetworksImage SynthesisInstance SegmentationMachine LearningPeriocular RecognitionDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaMachine Learning (ML) models have pushed state­of­the­art performance closer to (and even beyond) human level. However, the core of such algorithms is usually latent and hardly understandable. Thus, the field of Explainability focuses on researching and adopting techniques that can explain the reasons that support a model’s predictions. Such explanations of the decision­making process would help to build trust between said model and the human(s) using it. An explainable system also allows for better debugging, during the training phase, and fixing, upon deployment. But why should a developer devote time and effort into refactoring or rethinking Artificial Intelligence (AI) systems, to make them more transparent? Don’t they work just fine? Despite the temptation to answer ”yes”, are we really considering the cases where these systems fail? Are we assuming that ”almost perfect” accuracy is good enough? What if, some of the cases where these systems get it right, were just a small margin away from a complete miss? Does that even matter? Considering the ever­growing presence of ML models in crucial areas like forensics, security and healthcare services, it clearly does. Motivating these concerns is the fact that powerful systems often operate as black­boxes, hiding the core reasoning underneath layers of abstraction [Gue]. In this scenario, there could be some seriously negative outcomes if opaque algorithms gamble on the presence of tumours in X­ray images or the way autonomous vehicles behave in traffic. It becomes clear, then, that incorporating explainability with AI is imperative. More recently, the politicians have addressed this urgency through the General Data Protection Regulation (GDPR) [Com18]. With this document, the European Union (EU) brings forward several important concepts, amongst which, the ”right to an explanation”. The definition and scope are still subject to debate [MF17], but these are definite strides to formally regulate the explainable depth of autonomous systems. Based on the preface above, this work describes a periocular recognition framework that not only performs biometric recognition but also provides clear representations of the features/regions that support a prediction. Being particularly designed to explain non­match (”impostors”) decisions, our solution uses adversarial generative techniques to synthesise a large set of ”genuine” image pairs, from where the most similar elements with respect to a query are retrieved. Then, assuming the alignment between the query/retrieved pairs, the element­wise differences between the query and a weighted average of the retrieved elements yields a visual explanation of the regions in the query pair that would have to be different to transform it into a ”genuine” pair. Our quantitative and qualitative experiments validate the proposed solution, yielding recognition rates that are similar to the state­of­the­art, while adding visually pleasing explanations.Proença, Hugo Pedro Martins CarriçouBibliorumBrito, João Pedro da Cruz2022-01-17T16:46:12Z2021-07-132021-06-142021-07-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/11850TID:202858383enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:54:36Zoai:ubibliorum.ubi.pt:10400.6/11850Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:51:32.712828Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deep Adversarial Frameworks for Visually Explainable Periocular Recognition
title Deep Adversarial Frameworks for Visually Explainable Periocular Recognition
spellingShingle Deep Adversarial Frameworks for Visually Explainable Periocular Recognition
Brito, João Pedro da Cruz
Artificial Intelligence
Convolutional Neural Networks
Deep Learning
Explainability
Generative Adversarial Networks
Image Synthesis
Instance Segmentation
Machine Learning
Periocular Recognition
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Deep Adversarial Frameworks for Visually Explainable Periocular Recognition
title_full Deep Adversarial Frameworks for Visually Explainable Periocular Recognition
title_fullStr Deep Adversarial Frameworks for Visually Explainable Periocular Recognition
title_full_unstemmed Deep Adversarial Frameworks for Visually Explainable Periocular Recognition
title_sort Deep Adversarial Frameworks for Visually Explainable Periocular Recognition
author Brito, João Pedro da Cruz
author_facet Brito, João Pedro da Cruz
author_role author
dc.contributor.none.fl_str_mv Proença, Hugo Pedro Martins Carriço
uBibliorum
dc.contributor.author.fl_str_mv Brito, João Pedro da Cruz
dc.subject.por.fl_str_mv Artificial Intelligence
Convolutional Neural Networks
Deep Learning
Explainability
Generative Adversarial Networks
Image Synthesis
Instance Segmentation
Machine Learning
Periocular Recognition
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Artificial Intelligence
Convolutional Neural Networks
Deep Learning
Explainability
Generative Adversarial Networks
Image Synthesis
Instance Segmentation
Machine Learning
Periocular Recognition
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Machine Learning (ML) models have pushed state­of­the­art performance closer to (and even beyond) human level. However, the core of such algorithms is usually latent and hardly understandable. Thus, the field of Explainability focuses on researching and adopting techniques that can explain the reasons that support a model’s predictions. Such explanations of the decision­making process would help to build trust between said model and the human(s) using it. An explainable system also allows for better debugging, during the training phase, and fixing, upon deployment. But why should a developer devote time and effort into refactoring or rethinking Artificial Intelligence (AI) systems, to make them more transparent? Don’t they work just fine? Despite the temptation to answer ”yes”, are we really considering the cases where these systems fail? Are we assuming that ”almost perfect” accuracy is good enough? What if, some of the cases where these systems get it right, were just a small margin away from a complete miss? Does that even matter? Considering the ever­growing presence of ML models in crucial areas like forensics, security and healthcare services, it clearly does. Motivating these concerns is the fact that powerful systems often operate as black­boxes, hiding the core reasoning underneath layers of abstraction [Gue]. In this scenario, there could be some seriously negative outcomes if opaque algorithms gamble on the presence of tumours in X­ray images or the way autonomous vehicles behave in traffic. It becomes clear, then, that incorporating explainability with AI is imperative. More recently, the politicians have addressed this urgency through the General Data Protection Regulation (GDPR) [Com18]. With this document, the European Union (EU) brings forward several important concepts, amongst which, the ”right to an explanation”. The definition and scope are still subject to debate [MF17], but these are definite strides to formally regulate the explainable depth of autonomous systems. Based on the preface above, this work describes a periocular recognition framework that not only performs biometric recognition but also provides clear representations of the features/regions that support a prediction. Being particularly designed to explain non­match (”impostors”) decisions, our solution uses adversarial generative techniques to synthesise a large set of ”genuine” image pairs, from where the most similar elements with respect to a query are retrieved. Then, assuming the alignment between the query/retrieved pairs, the element­wise differences between the query and a weighted average of the retrieved elements yields a visual explanation of the regions in the query pair that would have to be different to transform it into a ”genuine” pair. Our quantitative and qualitative experiments validate the proposed solution, yielding recognition rates that are similar to the state­of­the­art, while adding visually pleasing explanations.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-13
2021-06-14
2021-07-13T00:00:00Z
2022-01-17T16:46:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/11850
TID:202858383
url http://hdl.handle.net/10400.6/11850
identifier_str_mv TID:202858383
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136404575354880