Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil

Detalhes bibliográficos
Autor(a) principal: ALMEIDA,C.S.
Data de Publicação: 2020
Outros Autores: MENDES,K.F., JUNQUEIRA,L.V., ALONSO,F.G., CHITOLINA,G.M., TORNISIELO,V.L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Planta daninha (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582020000100233
Resumo: ABSTRACT: The aim of this study was to evaluate diuron sorption, desorption and degradation in two anthropogenic soils (Terra Preta de Índio - TPI) in contrast to a sandy soil (Quartzarenic Neosol - NQo). Sorption-desorption studies were performed by the batch equilibrium method and biodegradation in biometric bottles using radiolabeled diuron in 14C. Freundlich coefficient (Kf) values ranged from 13.50 to 50.41 µmol(1-1/n) L1/n kg-1 in TPI-2 and TPI-1, respectively, indicating very high diuron sorption in anthropogenic soils, following the order: TPI-1 ≥ TPI-2 > NQo (99.10, 98.95 and 60.8%, respectively). Diuron desorption was very low in anthropogenic soils, ranging from 1.36 (TPI-1) to 1.70% (TPI-2), and 24% to NQo. Accumulated diuron mineralization to 14C-CO2 was < 3% at 70 days after herbicide application, regardless of the assessed soil. Formation of 35 and 44% residue bound to TPI-2 and TPI-1 was observed, higher than to NQo (17%). In contrast, the residue extracted from NQo varied from 72 to 91%, ranging from 48 to 83% for TPI-1 and TPI-2 during the incubation period. The degradation half-life (DT50) of diuron in anthropogenic soils was of 66.65 and 68.63 days for TPI-1 and TPI-2, respectively, while a period of 88.86 days was observed for NQo. The formation of only one herbicide metabolite in all soils was evidenced. The application of diuron in arable areas in the presence of anthropogenic Amazonian soils may lead to inefficient chemical weed control, since these soils may reduce herbicide soil bioavailability due to high OC contents, where high sorption and low herbicide desorption are noted, as well as faster degradation compared to sandy soil.
id SBCPD-1_f504375e2c9ebb16e13d8ee545c6ce32
oai_identifier_str oai:scielo:S0100-83582020000100233
network_acronym_str SBCPD-1
network_name_str Planta daninha (Online)
repository_id_str
spelling Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soilbound residuemineralizationsorption isothermsamazonian soilsABSTRACT: The aim of this study was to evaluate diuron sorption, desorption and degradation in two anthropogenic soils (Terra Preta de Índio - TPI) in contrast to a sandy soil (Quartzarenic Neosol - NQo). Sorption-desorption studies were performed by the batch equilibrium method and biodegradation in biometric bottles using radiolabeled diuron in 14C. Freundlich coefficient (Kf) values ranged from 13.50 to 50.41 µmol(1-1/n) L1/n kg-1 in TPI-2 and TPI-1, respectively, indicating very high diuron sorption in anthropogenic soils, following the order: TPI-1 ≥ TPI-2 > NQo (99.10, 98.95 and 60.8%, respectively). Diuron desorption was very low in anthropogenic soils, ranging from 1.36 (TPI-1) to 1.70% (TPI-2), and 24% to NQo. Accumulated diuron mineralization to 14C-CO2 was < 3% at 70 days after herbicide application, regardless of the assessed soil. Formation of 35 and 44% residue bound to TPI-2 and TPI-1 was observed, higher than to NQo (17%). In contrast, the residue extracted from NQo varied from 72 to 91%, ranging from 48 to 83% for TPI-1 and TPI-2 during the incubation period. The degradation half-life (DT50) of diuron in anthropogenic soils was of 66.65 and 68.63 days for TPI-1 and TPI-2, respectively, while a period of 88.86 days was observed for NQo. The formation of only one herbicide metabolite in all soils was evidenced. The application of diuron in arable areas in the presence of anthropogenic Amazonian soils may lead to inefficient chemical weed control, since these soils may reduce herbicide soil bioavailability due to high OC contents, where high sorption and low herbicide desorption are noted, as well as faster degradation compared to sandy soil.Sociedade Brasileira da Ciência das Plantas Daninhas 2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582020000100233Planta Daninha v.38 2020reponame:Planta daninha (Online)instname:Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)instacron:SBCPD10.1590/s0100-83582020380100034info:eu-repo/semantics/openAccessALMEIDA,C.S.MENDES,K.F.JUNQUEIRA,L.V.ALONSO,F.G.CHITOLINA,G.M.TORNISIELO,V.L.eng2020-04-07T00:00:00Zoai:scielo:S0100-83582020000100233Revistahttp://revistas.cpd.ufv.br/pdaninhaweb/https://old.scielo.br/oai/scielo-oai.php||rpdaninha@gmail.com1806-96810100-8358opendoar:2020-04-07T00:00Planta daninha (Online) - Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)false
dc.title.none.fl_str_mv Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil
title Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil
spellingShingle Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil
ALMEIDA,C.S.
bound residue
mineralization
sorption isotherms
amazonian soils
title_short Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil
title_full Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil
title_fullStr Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil
title_full_unstemmed Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil
title_sort Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil
author ALMEIDA,C.S.
author_facet ALMEIDA,C.S.
MENDES,K.F.
JUNQUEIRA,L.V.
ALONSO,F.G.
CHITOLINA,G.M.
TORNISIELO,V.L.
author_role author
author2 MENDES,K.F.
JUNQUEIRA,L.V.
ALONSO,F.G.
CHITOLINA,G.M.
TORNISIELO,V.L.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv ALMEIDA,C.S.
MENDES,K.F.
JUNQUEIRA,L.V.
ALONSO,F.G.
CHITOLINA,G.M.
TORNISIELO,V.L.
dc.subject.por.fl_str_mv bound residue
mineralization
sorption isotherms
amazonian soils
topic bound residue
mineralization
sorption isotherms
amazonian soils
description ABSTRACT: The aim of this study was to evaluate diuron sorption, desorption and degradation in two anthropogenic soils (Terra Preta de Índio - TPI) in contrast to a sandy soil (Quartzarenic Neosol - NQo). Sorption-desorption studies were performed by the batch equilibrium method and biodegradation in biometric bottles using radiolabeled diuron in 14C. Freundlich coefficient (Kf) values ranged from 13.50 to 50.41 µmol(1-1/n) L1/n kg-1 in TPI-2 and TPI-1, respectively, indicating very high diuron sorption in anthropogenic soils, following the order: TPI-1 ≥ TPI-2 > NQo (99.10, 98.95 and 60.8%, respectively). Diuron desorption was very low in anthropogenic soils, ranging from 1.36 (TPI-1) to 1.70% (TPI-2), and 24% to NQo. Accumulated diuron mineralization to 14C-CO2 was < 3% at 70 days after herbicide application, regardless of the assessed soil. Formation of 35 and 44% residue bound to TPI-2 and TPI-1 was observed, higher than to NQo (17%). In contrast, the residue extracted from NQo varied from 72 to 91%, ranging from 48 to 83% for TPI-1 and TPI-2 during the incubation period. The degradation half-life (DT50) of diuron in anthropogenic soils was of 66.65 and 68.63 days for TPI-1 and TPI-2, respectively, while a period of 88.86 days was observed for NQo. The formation of only one herbicide metabolite in all soils was evidenced. The application of diuron in arable areas in the presence of anthropogenic Amazonian soils may lead to inefficient chemical weed control, since these soils may reduce herbicide soil bioavailability due to high OC contents, where high sorption and low herbicide desorption are noted, as well as faster degradation compared to sandy soil.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582020000100233
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582020000100233
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s0100-83582020380100034
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira da Ciência das Plantas Daninhas
publisher.none.fl_str_mv Sociedade Brasileira da Ciência das Plantas Daninhas
dc.source.none.fl_str_mv Planta Daninha v.38 2020
reponame:Planta daninha (Online)
instname:Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)
instacron:SBCPD
instname_str Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)
instacron_str SBCPD
institution SBCPD
reponame_str Planta daninha (Online)
collection Planta daninha (Online)
repository.name.fl_str_mv Planta daninha (Online) - Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)
repository.mail.fl_str_mv ||rpdaninha@gmail.com
_version_ 1752126497064222720