Monte Carlo simulation of nuclear logging detection systems

Detalhes bibliográficos
Autor(a) principal: Silva,Jadir C. da
Data de Publicação: 2001
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Geofísica (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2001000300001
Resumo: The utmost challenge in nuclear logs interpretations and spectroscopy comes from the complex and dynamic structure of the radiation detectors response function. To interpret accurately such logs, the energy spectra for several dimensions of nuclear logging detectors must be satisfactorily known. In this work, different incident photon track and energies owing to events occurring into the gamma ray detector are simulated by the Monte Carlo method. The life of a particle within a NaI(Tl) scintillator crystal is computed by simulating the position, direction and energy of electrons and gamma-ray photons interaction by interaction. Four types of photon interactions are computed, namely, photoelectric absorption, pair production, and Rayleigh and Compton scattering. The specific energy loss due to ionization and excitation for electron are also computed. These pulse high spectra are determined by collecting the radiation and transforming it into current pulses. The spectral distribution of these pulses results in a matrix of detector normalized response functions for multiple and complicated source geometry linked with all gamma ray incidence normally required on borehole environment. These data are displayed in such a way that they can be readily carried out into all nuclear log modeling processes with relevant detection effects.
id SBG-3_d40d1f2045928e042d62962214e04b48
oai_identifier_str oai:scielo:S0102-261X2001000300001
network_acronym_str SBG-3
network_name_str Revista Brasileira de Geofísica (Online)
repository_id_str
spelling Monte Carlo simulation of nuclear logging detection systemsMonte Carlo MethodNa I (Tl) detectorNuclear loggingThe utmost challenge in nuclear logs interpretations and spectroscopy comes from the complex and dynamic structure of the radiation detectors response function. To interpret accurately such logs, the energy spectra for several dimensions of nuclear logging detectors must be satisfactorily known. In this work, different incident photon track and energies owing to events occurring into the gamma ray detector are simulated by the Monte Carlo method. The life of a particle within a NaI(Tl) scintillator crystal is computed by simulating the position, direction and energy of electrons and gamma-ray photons interaction by interaction. Four types of photon interactions are computed, namely, photoelectric absorption, pair production, and Rayleigh and Compton scattering. The specific energy loss due to ionization and excitation for electron are also computed. These pulse high spectra are determined by collecting the radiation and transforming it into current pulses. The spectral distribution of these pulses results in a matrix of detector normalized response functions for multiple and complicated source geometry linked with all gamma ray incidence normally required on borehole environment. These data are displayed in such a way that they can be readily carried out into all nuclear log modeling processes with relevant detection effects.Sociedade Brasileira de Geofísica2001-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2001000300001Revista Brasileira de Geofísica v.19 n.3 2001reponame:Revista Brasileira de Geofísica (Online)instname:Sociedade Brasileira de Geofísica (SBG)instacron:SBG10.1590/S0102-261X2001000300001info:eu-repo/semantics/openAccessSilva,Jadir C. daeng2003-10-01T00:00:00Zoai:scielo:S0102-261X2001000300001Revistahttp://www.scielo.br/rbgONGhttps://old.scielo.br/oai/scielo-oai.php||sbgf@sbgf.org.br1809-45110102-261Xopendoar:2003-10-01T00:00Revista Brasileira de Geofísica (Online) - Sociedade Brasileira de Geofísica (SBG)false
dc.title.none.fl_str_mv Monte Carlo simulation of nuclear logging detection systems
title Monte Carlo simulation of nuclear logging detection systems
spellingShingle Monte Carlo simulation of nuclear logging detection systems
Silva,Jadir C. da
Monte Carlo Method
Na I (Tl) detector
Nuclear logging
title_short Monte Carlo simulation of nuclear logging detection systems
title_full Monte Carlo simulation of nuclear logging detection systems
title_fullStr Monte Carlo simulation of nuclear logging detection systems
title_full_unstemmed Monte Carlo simulation of nuclear logging detection systems
title_sort Monte Carlo simulation of nuclear logging detection systems
author Silva,Jadir C. da
author_facet Silva,Jadir C. da
author_role author
dc.contributor.author.fl_str_mv Silva,Jadir C. da
dc.subject.por.fl_str_mv Monte Carlo Method
Na I (Tl) detector
Nuclear logging
topic Monte Carlo Method
Na I (Tl) detector
Nuclear logging
description The utmost challenge in nuclear logs interpretations and spectroscopy comes from the complex and dynamic structure of the radiation detectors response function. To interpret accurately such logs, the energy spectra for several dimensions of nuclear logging detectors must be satisfactorily known. In this work, different incident photon track and energies owing to events occurring into the gamma ray detector are simulated by the Monte Carlo method. The life of a particle within a NaI(Tl) scintillator crystal is computed by simulating the position, direction and energy of electrons and gamma-ray photons interaction by interaction. Four types of photon interactions are computed, namely, photoelectric absorption, pair production, and Rayleigh and Compton scattering. The specific energy loss due to ionization and excitation for electron are also computed. These pulse high spectra are determined by collecting the radiation and transforming it into current pulses. The spectral distribution of these pulses results in a matrix of detector normalized response functions for multiple and complicated source geometry linked with all gamma ray incidence normally required on borehole environment. These data are displayed in such a way that they can be readily carried out into all nuclear log modeling processes with relevant detection effects.
publishDate 2001
dc.date.none.fl_str_mv 2001-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2001000300001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2001000300001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0102-261X2001000300001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Geofísica
publisher.none.fl_str_mv Sociedade Brasileira de Geofísica
dc.source.none.fl_str_mv Revista Brasileira de Geofísica v.19 n.3 2001
reponame:Revista Brasileira de Geofísica (Online)
instname:Sociedade Brasileira de Geofísica (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Geofísica (SBG)
instacron_str SBG
institution SBG
reponame_str Revista Brasileira de Geofísica (Online)
collection Revista Brasileira de Geofísica (Online)
repository.name.fl_str_mv Revista Brasileira de Geofísica (Online) - Sociedade Brasileira de Geofísica (SBG)
repository.mail.fl_str_mv ||sbgf@sbgf.org.br
_version_ 1754820935984087040