Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices

Detalhes bibliográficos
Autor(a) principal: Behera,Shuvashish
Data de Publicação: 2012
Outros Autores: Mohanty,Rama C., Ray,Ramesh C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Microbiology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822012000400034
Resumo: Bio-ethanol production from cane molasses (diluted to 15 % sugar w/v) was studied using the bacterium, Zymomonas mobilis MTCC 92 entrapped in luffa (Luffa cylindrica L.) sponge discs and Ca-alginate gel beads as the immobilizing matrices. At the end of 96 h fermentation, the final ethanol concentrations were 58.7 ± 0.09 and 59.1 ± 0.08 g/l molasses with luffa and Ca-alginate entrapped Z. mobilis cells, respectively exhibiting 83.25 ± 0.03 and 84.6 ± 0.02 % sugar conversion. There was no statistical significant difference (Fischer's LSD) in sugar utilization (t = 0.254, p <0.801) and ethanol production (t =-0.663, p <0.513) between the two immobilization matrices used. Further, the immobilized cells in both the matrices were physiologically active for three more cycles of operation with less than 15 % decrease in ethanol yield in the 4th cycle, which was due to some leakage of cells. In conclusion, luffa sponge was found to be equally good as Ca-alginate as a carrier material for bacterial (Z. mobilis. cell immobilization for ethanol production. Further, it has added advantages such as it is cheap, non-corrosive and has no environmental hazard.
id SBM-1_a8e69c16d8c923ac46faaffa872f577f
oai_identifier_str oai:scielo:S1517-83822012000400034
network_acronym_str SBM-1
network_name_str Brazilian Journal of Microbiology
repository_id_str
spelling Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matricesBio-ethanolCell immobilizationFermentationMolassesZymomonas mobilis MTCC 92Bio-ethanol production from cane molasses (diluted to 15 % sugar w/v) was studied using the bacterium, Zymomonas mobilis MTCC 92 entrapped in luffa (Luffa cylindrica L.) sponge discs and Ca-alginate gel beads as the immobilizing matrices. At the end of 96 h fermentation, the final ethanol concentrations were 58.7 ± 0.09 and 59.1 ± 0.08 g/l molasses with luffa and Ca-alginate entrapped Z. mobilis cells, respectively exhibiting 83.25 ± 0.03 and 84.6 ± 0.02 % sugar conversion. There was no statistical significant difference (Fischer's LSD) in sugar utilization (t = 0.254, p <0.801) and ethanol production (t =-0.663, p <0.513) between the two immobilization matrices used. Further, the immobilized cells in both the matrices were physiologically active for three more cycles of operation with less than 15 % decrease in ethanol yield in the 4th cycle, which was due to some leakage of cells. In conclusion, luffa sponge was found to be equally good as Ca-alginate as a carrier material for bacterial (Z. mobilis. cell immobilization for ethanol production. Further, it has added advantages such as it is cheap, non-corrosive and has no environmental hazard.Sociedade Brasileira de Microbiologia2012-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822012000400034Brazilian Journal of Microbiology v.43 n.4 2012reponame:Brazilian Journal of Microbiologyinstname:Sociedade Brasileira de Microbiologia (SBM)instacron:SBM10.1590/S1517-83822012000400034info:eu-repo/semantics/openAccessBehera,ShuvashishMohanty,Rama C.Ray,Ramesh C.eng2013-02-19T00:00:00Zoai:scielo:S1517-83822012000400034Revistahttps://www.scielo.br/j/bjm/ONGhttps://old.scielo.br/oai/scielo-oai.phpbjm@sbmicrobiologia.org.br||mbmartin@usp.br1678-44051517-8382opendoar:2013-02-19T00:00Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)false
dc.title.none.fl_str_mv Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices
title Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices
spellingShingle Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices
Behera,Shuvashish
Bio-ethanol
Cell immobilization
Fermentation
Molasses
Zymomonas mobilis MTCC 92
title_short Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices
title_full Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices
title_fullStr Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices
title_full_unstemmed Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices
title_sort Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices
author Behera,Shuvashish
author_facet Behera,Shuvashish
Mohanty,Rama C.
Ray,Ramesh C.
author_role author
author2 Mohanty,Rama C.
Ray,Ramesh C.
author2_role author
author
dc.contributor.author.fl_str_mv Behera,Shuvashish
Mohanty,Rama C.
Ray,Ramesh C.
dc.subject.por.fl_str_mv Bio-ethanol
Cell immobilization
Fermentation
Molasses
Zymomonas mobilis MTCC 92
topic Bio-ethanol
Cell immobilization
Fermentation
Molasses
Zymomonas mobilis MTCC 92
description Bio-ethanol production from cane molasses (diluted to 15 % sugar w/v) was studied using the bacterium, Zymomonas mobilis MTCC 92 entrapped in luffa (Luffa cylindrica L.) sponge discs and Ca-alginate gel beads as the immobilizing matrices. At the end of 96 h fermentation, the final ethanol concentrations were 58.7 ± 0.09 and 59.1 ± 0.08 g/l molasses with luffa and Ca-alginate entrapped Z. mobilis cells, respectively exhibiting 83.25 ± 0.03 and 84.6 ± 0.02 % sugar conversion. There was no statistical significant difference (Fischer's LSD) in sugar utilization (t = 0.254, p <0.801) and ethanol production (t =-0.663, p <0.513) between the two immobilization matrices used. Further, the immobilized cells in both the matrices were physiologically active for three more cycles of operation with less than 15 % decrease in ethanol yield in the 4th cycle, which was due to some leakage of cells. In conclusion, luffa sponge was found to be equally good as Ca-alginate as a carrier material for bacterial (Z. mobilis. cell immobilization for ethanol production. Further, it has added advantages such as it is cheap, non-corrosive and has no environmental hazard.
publishDate 2012
dc.date.none.fl_str_mv 2012-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822012000400034
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822012000400034
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1517-83822012000400034
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
dc.source.none.fl_str_mv Brazilian Journal of Microbiology v.43 n.4 2012
reponame:Brazilian Journal of Microbiology
instname:Sociedade Brasileira de Microbiologia (SBM)
instacron:SBM
instname_str Sociedade Brasileira de Microbiologia (SBM)
instacron_str SBM
institution SBM
reponame_str Brazilian Journal of Microbiology
collection Brazilian Journal of Microbiology
repository.name.fl_str_mv Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)
repository.mail.fl_str_mv bjm@sbmicrobiologia.org.br||mbmartin@usp.br
_version_ 1752122204827418624