Electromagnetic Energy Harvesting Using a Glass Window

Detalhes bibliográficos
Autor(a) principal: Gonçalves,Yan S.
Data de Publicação: 2020
Outros Autores: Resende,Ursula C., Soares,Ícaro V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Microwaves. Optoelectronics and Electromagnetic Applications
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742020000100050
Resumo: Abstract In this work, a new constructive and conceptual model for rectenna, using glass as dielectric substrate, was proposed. This research aims to produce a window for building facades that can harvest the electromagnetic energy available in the environment. For this proposal, a slotted patch antenna was designed with two main objectives: to have a low value of S11 parameter and to allow the maximum visibility through the glass. In order to accomplish an efficient radio frequency to direct current conversion, a voltage doubler rectifier was designed and built in the same glass substrate, directly connected to the antenna. The final system is a window composed of eight individual rectennas associated in parallel. For improving the window energy harvesting ability, a metamaterial structure was added to each rectenna element, which acts in order increases the patch antenna gain. Each rectenna was designed by using both Advanced Design System and Computer Simulation Technology softwares and optimized to operate at 2.45 GHz. The measured results show that the proposed rectenna model is an efficient solution to improve the total amount of harvested energy, which is enough to power a low consumption load.
id SBMO-1_5d5f304bb7bbfd063f06d128ae380954
oai_identifier_str oai:scielo:S2179-10742020000100050
network_acronym_str SBMO-1
network_name_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository_id_str
spelling Electromagnetic Energy Harvesting Using a Glass WindowElectromagnetic energy harvestingglass dielectric substratemetamaterialpatch antennasrectennaAbstract In this work, a new constructive and conceptual model for rectenna, using glass as dielectric substrate, was proposed. This research aims to produce a window for building facades that can harvest the electromagnetic energy available in the environment. For this proposal, a slotted patch antenna was designed with two main objectives: to have a low value of S11 parameter and to allow the maximum visibility through the glass. In order to accomplish an efficient radio frequency to direct current conversion, a voltage doubler rectifier was designed and built in the same glass substrate, directly connected to the antenna. The final system is a window composed of eight individual rectennas associated in parallel. For improving the window energy harvesting ability, a metamaterial structure was added to each rectenna element, which acts in order increases the patch antenna gain. Each rectenna was designed by using both Advanced Design System and Computer Simulation Technology softwares and optimized to operate at 2.45 GHz. The measured results show that the proposed rectenna model is an efficient solution to improve the total amount of harvested energy, which is enough to power a low consumption load.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2020-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742020000100050Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.19 n.1 2020reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742020v19i11892info:eu-repo/semantics/openAccessGonçalves,Yan S.Resende,Ursula C.Soares,Ícaro V.eng2021-03-24T00:00:00Zoai:scielo:S2179-10742020000100050Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2021-03-24T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false
dc.title.none.fl_str_mv Electromagnetic Energy Harvesting Using a Glass Window
title Electromagnetic Energy Harvesting Using a Glass Window
spellingShingle Electromagnetic Energy Harvesting Using a Glass Window
Gonçalves,Yan S.
Electromagnetic energy harvesting
glass dielectric substrate
metamaterial
patch antennas
rectenna
title_short Electromagnetic Energy Harvesting Using a Glass Window
title_full Electromagnetic Energy Harvesting Using a Glass Window
title_fullStr Electromagnetic Energy Harvesting Using a Glass Window
title_full_unstemmed Electromagnetic Energy Harvesting Using a Glass Window
title_sort Electromagnetic Energy Harvesting Using a Glass Window
author Gonçalves,Yan S.
author_facet Gonçalves,Yan S.
Resende,Ursula C.
Soares,Ícaro V.
author_role author
author2 Resende,Ursula C.
Soares,Ícaro V.
author2_role author
author
dc.contributor.author.fl_str_mv Gonçalves,Yan S.
Resende,Ursula C.
Soares,Ícaro V.
dc.subject.por.fl_str_mv Electromagnetic energy harvesting
glass dielectric substrate
metamaterial
patch antennas
rectenna
topic Electromagnetic energy harvesting
glass dielectric substrate
metamaterial
patch antennas
rectenna
description Abstract In this work, a new constructive and conceptual model for rectenna, using glass as dielectric substrate, was proposed. This research aims to produce a window for building facades that can harvest the electromagnetic energy available in the environment. For this proposal, a slotted patch antenna was designed with two main objectives: to have a low value of S11 parameter and to allow the maximum visibility through the glass. In order to accomplish an efficient radio frequency to direct current conversion, a voltage doubler rectifier was designed and built in the same glass substrate, directly connected to the antenna. The final system is a window composed of eight individual rectennas associated in parallel. For improving the window energy harvesting ability, a metamaterial structure was added to each rectenna element, which acts in order increases the patch antenna gain. Each rectenna was designed by using both Advanced Design System and Computer Simulation Technology softwares and optimized to operate at 2.45 GHz. The measured results show that the proposed rectenna model is an efficient solution to improve the total amount of harvested energy, which is enough to power a low consumption load.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742020000100050
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742020000100050
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-10742020v19i11892
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
dc.source.none.fl_str_mv Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.19 n.1 2020
reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications
instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron:SBMO
instname_str Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron_str SBMO
institution SBMO
reponame_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
collection Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository.name.fl_str_mv Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
repository.mail.fl_str_mv ||editor_jmoe@sbmo.org.br
_version_ 1752122126670757888