Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails

Detalhes bibliográficos
Autor(a) principal: Freitas,Anderson
Data de Publicação: 2021
Outros Autores: Silva,Landwehrle de Lucena da, Costa,Renilton Rodrigues, Ramos,Lucas Sacramento, Giordano,Marcos Norberto, Gonçalves,Henrique Mansur
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ortopedia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-36162021000200251
Resumo: Abstract Objective The present study aims to identify the energy required for synthetic proximal femoral fracture after removal of three implant types: cannulated screws, dynamic hip screws (DHS), and proximal femoral nail (PFN). Methods Twenty-five synthetic proximal femur bones were used: 10 were kept intact as the control group (CG), 5 were submitted to the placement and removal of 3 cannulated screws in an inverted triangle configuration (CSG), 5 were submitted to the placement and removal of a dynamic compression screw (DHSG), and 5 were submitted to the placement and removal of a proximal femur nail (PFNG). All samples were biomechanically analyzed simulating a fall on the greater trochanter using a servo-hydraulic machine to determine the energy (in Joules [J]) required for fracture. Results All samples presented basicervical fractures. The energy required for fracture was 7.1 J, 6.6 J, 6 J, and 6.7 J for the CG, CSG, DHSG and PFNG, respectively. There was no statistically significant difference (considering a 95% confidence interval) in energy among the study groups (p = 0.34). Conclusion There was no statistically significant difference in the energy required to cause a synthetic proximal femoral fracture after removing all three implant types and simulating a fall over the greater trochanter.
id SBOT-2_a265d70844215310ed97b39d7c10be18
oai_identifier_str oai:scielo:S0102-36162021000200251
network_acronym_str SBOT-2
network_name_str Revista Brasileira de Ortopedia (Online)
repository_id_str
spelling Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nailshiphip fracturesfracture fixationdevice removalAbstract Objective The present study aims to identify the energy required for synthetic proximal femoral fracture after removal of three implant types: cannulated screws, dynamic hip screws (DHS), and proximal femoral nail (PFN). Methods Twenty-five synthetic proximal femur bones were used: 10 were kept intact as the control group (CG), 5 were submitted to the placement and removal of 3 cannulated screws in an inverted triangle configuration (CSG), 5 were submitted to the placement and removal of a dynamic compression screw (DHSG), and 5 were submitted to the placement and removal of a proximal femur nail (PFNG). All samples were biomechanically analyzed simulating a fall on the greater trochanter using a servo-hydraulic machine to determine the energy (in Joules [J]) required for fracture. Results All samples presented basicervical fractures. The energy required for fracture was 7.1 J, 6.6 J, 6 J, and 6.7 J for the CG, CSG, DHSG and PFNG, respectively. There was no statistically significant difference (considering a 95% confidence interval) in energy among the study groups (p = 0.34). Conclusion There was no statistically significant difference in the energy required to cause a synthetic proximal femoral fracture after removing all three implant types and simulating a fall over the greater trochanter.Sociedade Brasileira de Ortopedia e Traumatologia2021-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-36162021000200251Revista Brasileira de Ortopedia v.56 n.2 2021reponame:Revista Brasileira de Ortopedia (Online)instname:Sociedade Brasileira de Ortopedia e Traumatologia (SBOT)instacron:SBOT10.1055/s-0040-1721832info:eu-repo/semantics/openAccessFreitas,AndersonSilva,Landwehrle de Lucena daCosta,Renilton RodriguesRamos,Lucas SacramentoGiordano,Marcos NorbertoGonçalves,Henrique Mansureng2021-05-31T00:00:00Zoai:scielo:S0102-36162021000200251Revistahttp://www.rbo.org.br/https://old.scielo.br/oai/scielo-oai.php||rbo@sbot.org.br1982-43780102-3616opendoar:2021-05-31T00:00Revista Brasileira de Ortopedia (Online) - Sociedade Brasileira de Ortopedia e Traumatologia (SBOT)false
dc.title.none.fl_str_mv Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails
title Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails
spellingShingle Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails
Freitas,Anderson
hip
hip fractures
fracture fixation
device removal
title_short Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails
title_full Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails
title_fullStr Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails
title_full_unstemmed Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails
title_sort Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails
author Freitas,Anderson
author_facet Freitas,Anderson
Silva,Landwehrle de Lucena da
Costa,Renilton Rodrigues
Ramos,Lucas Sacramento
Giordano,Marcos Norberto
Gonçalves,Henrique Mansur
author_role author
author2 Silva,Landwehrle de Lucena da
Costa,Renilton Rodrigues
Ramos,Lucas Sacramento
Giordano,Marcos Norberto
Gonçalves,Henrique Mansur
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Freitas,Anderson
Silva,Landwehrle de Lucena da
Costa,Renilton Rodrigues
Ramos,Lucas Sacramento
Giordano,Marcos Norberto
Gonçalves,Henrique Mansur
dc.subject.por.fl_str_mv hip
hip fractures
fracture fixation
device removal
topic hip
hip fractures
fracture fixation
device removal
description Abstract Objective The present study aims to identify the energy required for synthetic proximal femoral fracture after removal of three implant types: cannulated screws, dynamic hip screws (DHS), and proximal femoral nail (PFN). Methods Twenty-five synthetic proximal femur bones were used: 10 were kept intact as the control group (CG), 5 were submitted to the placement and removal of 3 cannulated screws in an inverted triangle configuration (CSG), 5 were submitted to the placement and removal of a dynamic compression screw (DHSG), and 5 were submitted to the placement and removal of a proximal femur nail (PFNG). All samples were biomechanically analyzed simulating a fall on the greater trochanter using a servo-hydraulic machine to determine the energy (in Joules [J]) required for fracture. Results All samples presented basicervical fractures. The energy required for fracture was 7.1 J, 6.6 J, 6 J, and 6.7 J for the CG, CSG, DHSG and PFNG, respectively. There was no statistically significant difference (considering a 95% confidence interval) in energy among the study groups (p = 0.34). Conclusion There was no statistically significant difference in the energy required to cause a synthetic proximal femoral fracture after removing all three implant types and simulating a fall over the greater trochanter.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-36162021000200251
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-36162021000200251
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1055/s-0040-1721832
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ortopedia e Traumatologia
publisher.none.fl_str_mv Sociedade Brasileira de Ortopedia e Traumatologia
dc.source.none.fl_str_mv Revista Brasileira de Ortopedia v.56 n.2 2021
reponame:Revista Brasileira de Ortopedia (Online)
instname:Sociedade Brasileira de Ortopedia e Traumatologia (SBOT)
instacron:SBOT
instname_str Sociedade Brasileira de Ortopedia e Traumatologia (SBOT)
instacron_str SBOT
institution SBOT
reponame_str Revista Brasileira de Ortopedia (Online)
collection Revista Brasileira de Ortopedia (Online)
repository.name.fl_str_mv Revista Brasileira de Ortopedia (Online) - Sociedade Brasileira de Ortopedia e Traumatologia (SBOT)
repository.mail.fl_str_mv ||rbo@sbot.org.br
_version_ 1752122362861453312