Multivariate QSAR

Detalhes bibliográficos
Autor(a) principal: Ferreira,Márcia M. C.
Data de Publicação: 2002
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532002000600004
Resumo: In this work, the chemometric techniques most frequently used in QSAR (quantitative structure-activity relationships) studies are reviewed. They are introduced in chronological order, beginning with Hansch analysis and the exploratory data analysis methods of principal components and hierarchical clustering (PCA and HCA). Principal component regression and partial least squares regression methods (PCR and PLS) are discussed, followed by the pattern recognition methods (KNN and SIMCA). Different applications are presented to illustrate these chemometric techniques. The methodology used for regression in 3D-QSAR is presented (unfolding PLS). Finally, the higher order method called Multilinear PLS, already used in analytical chemistry but not yet explored by the QSAR community, is introduced. This method maintains the multiway structure of the data and has several advantages over bilinear PLS including speed in calculation, simplicity and stability, since the number of parameters to be estimated can be greatly reduced.
id SBQ-2_436828533c2db1c88970f5c38055774d
oai_identifier_str oai:scielo:S0103-50532002000600004
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Multivariate QSARchemometricsprincipal component analysispartial least squaresSIMCAKNNIn this work, the chemometric techniques most frequently used in QSAR (quantitative structure-activity relationships) studies are reviewed. They are introduced in chronological order, beginning with Hansch analysis and the exploratory data analysis methods of principal components and hierarchical clustering (PCA and HCA). Principal component regression and partial least squares regression methods (PCR and PLS) are discussed, followed by the pattern recognition methods (KNN and SIMCA). Different applications are presented to illustrate these chemometric techniques. The methodology used for regression in 3D-QSAR is presented (unfolding PLS). Finally, the higher order method called Multilinear PLS, already used in analytical chemistry but not yet explored by the QSAR community, is introduced. This method maintains the multiway structure of the data and has several advantages over bilinear PLS including speed in calculation, simplicity and stability, since the number of parameters to be estimated can be greatly reduced.Sociedade Brasileira de Química2002-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532002000600004Journal of the Brazilian Chemical Society v.13 n.6 2002reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532002000600004info:eu-repo/semantics/openAccessFerreira,Márcia M. C.eng2015-11-26T00:00:00Zoai:scielo:S0103-50532002000600004Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2015-11-26T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Multivariate QSAR
title Multivariate QSAR
spellingShingle Multivariate QSAR
Ferreira,Márcia M. C.
chemometrics
principal component analysis
partial least squares
SIMCA
KNN
title_short Multivariate QSAR
title_full Multivariate QSAR
title_fullStr Multivariate QSAR
title_full_unstemmed Multivariate QSAR
title_sort Multivariate QSAR
author Ferreira,Márcia M. C.
author_facet Ferreira,Márcia M. C.
author_role author
dc.contributor.author.fl_str_mv Ferreira,Márcia M. C.
dc.subject.por.fl_str_mv chemometrics
principal component analysis
partial least squares
SIMCA
KNN
topic chemometrics
principal component analysis
partial least squares
SIMCA
KNN
description In this work, the chemometric techniques most frequently used in QSAR (quantitative structure-activity relationships) studies are reviewed. They are introduced in chronological order, beginning with Hansch analysis and the exploratory data analysis methods of principal components and hierarchical clustering (PCA and HCA). Principal component regression and partial least squares regression methods (PCR and PLS) are discussed, followed by the pattern recognition methods (KNN and SIMCA). Different applications are presented to illustrate these chemometric techniques. The methodology used for regression in 3D-QSAR is presented (unfolding PLS). Finally, the higher order method called Multilinear PLS, already used in analytical chemistry but not yet explored by the QSAR community, is introduced. This method maintains the multiway structure of the data and has several advantages over bilinear PLS including speed in calculation, simplicity and stability, since the number of parameters to be estimated can be greatly reduced.
publishDate 2002
dc.date.none.fl_str_mv 2002-11-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532002000600004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532002000600004
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-50532002000600004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.13 n.6 2002
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318164963491840