Trace metals in the urban aerosols of Rio de Janeiro city

Detalhes bibliográficos
Autor(a) principal: Loyola,Josiane
Data de Publicação: 2012
Outros Autores: Arbilla,Graciela, Quiterio,Simone L., Escaleira,Viviane, Minho,Alan S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000400007
Resumo: From January to April 2009, samples of suspended particles (TSP) and particulate matters (PM10 and PM2.5) were collected from a well-characterized urban area that is highly impacted by vehicular traffic. The metal concentrations in these samples were determined using ICP-OES (inductively coupled plasma-optical emission spectroscopy). Ca, Mg, Fe and Al were the most abundant metals present in TSP and PM10, with concentrations higher than 427 ng m-3. In PM2.5, the most abundant metals were Fe and Ca (307 and 60 ng m-3, respectively), while the concentrations of Mg, Zn and Cu were approximately 20 ng m-3. For PM10 and PM2.5, high correlations were obtained for Ca, Mg and Al, while the correlation of Ca and Mg with Fe was poor, thereby indicating that Ca, Mg and Al probably originate mainly from the resuspension of dust, while Fe may also be originated from an additional source, such as brake wear. Anthropogenic elements (Zn and Cu) had low correlation factors, suggesting different emission sources. The presence of Cu may be linked to the abrasion of brakes, and Zn may be attributed to tire wear. In fine particles, Ca, Mn, Fe, Zn and Cu were present in higher ratios than in crustal material. Because these particles are mainly observed due to the combustion processes, they may be present in gasoline, oil and lubricants. Fe was correlated with Mn, while correlation factors between Ca and Mg were relatively lower.
id SBQ-2_c2abb939219ce7bbf3172a8c52e14eee
oai_identifier_str oai:scielo:S0103-50532012000400007
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Trace metals in the urban aerosols of Rio de Janeiro citytotal particulate matterPM10PM2.5trace metalsvehicle emissionsFrom January to April 2009, samples of suspended particles (TSP) and particulate matters (PM10 and PM2.5) were collected from a well-characterized urban area that is highly impacted by vehicular traffic. The metal concentrations in these samples were determined using ICP-OES (inductively coupled plasma-optical emission spectroscopy). Ca, Mg, Fe and Al were the most abundant metals present in TSP and PM10, with concentrations higher than 427 ng m-3. In PM2.5, the most abundant metals were Fe and Ca (307 and 60 ng m-3, respectively), while the concentrations of Mg, Zn and Cu were approximately 20 ng m-3. For PM10 and PM2.5, high correlations were obtained for Ca, Mg and Al, while the correlation of Ca and Mg with Fe was poor, thereby indicating that Ca, Mg and Al probably originate mainly from the resuspension of dust, while Fe may also be originated from an additional source, such as brake wear. Anthropogenic elements (Zn and Cu) had low correlation factors, suggesting different emission sources. The presence of Cu may be linked to the abrasion of brakes, and Zn may be attributed to tire wear. In fine particles, Ca, Mn, Fe, Zn and Cu were present in higher ratios than in crustal material. Because these particles are mainly observed due to the combustion processes, they may be present in gasoline, oil and lubricants. Fe was correlated with Mn, while correlation factors between Ca and Mg were relatively lower.Sociedade Brasileira de Química2012-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000400007Journal of the Brazilian Chemical Society v.23 n.4 2012reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532012000400007info:eu-repo/semantics/openAccessLoyola,JosianeArbilla,GracielaQuiterio,Simone L.Escaleira,VivianeMinho,Alan S.eng2012-04-27T00:00:00Zoai:scielo:S0103-50532012000400007Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2012-04-27T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Trace metals in the urban aerosols of Rio de Janeiro city
title Trace metals in the urban aerosols of Rio de Janeiro city
spellingShingle Trace metals in the urban aerosols of Rio de Janeiro city
Loyola,Josiane
total particulate matter
PM10
PM2.5
trace metals
vehicle emissions
title_short Trace metals in the urban aerosols of Rio de Janeiro city
title_full Trace metals in the urban aerosols of Rio de Janeiro city
title_fullStr Trace metals in the urban aerosols of Rio de Janeiro city
title_full_unstemmed Trace metals in the urban aerosols of Rio de Janeiro city
title_sort Trace metals in the urban aerosols of Rio de Janeiro city
author Loyola,Josiane
author_facet Loyola,Josiane
Arbilla,Graciela
Quiterio,Simone L.
Escaleira,Viviane
Minho,Alan S.
author_role author
author2 Arbilla,Graciela
Quiterio,Simone L.
Escaleira,Viviane
Minho,Alan S.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Loyola,Josiane
Arbilla,Graciela
Quiterio,Simone L.
Escaleira,Viviane
Minho,Alan S.
dc.subject.por.fl_str_mv total particulate matter
PM10
PM2.5
trace metals
vehicle emissions
topic total particulate matter
PM10
PM2.5
trace metals
vehicle emissions
description From January to April 2009, samples of suspended particles (TSP) and particulate matters (PM10 and PM2.5) were collected from a well-characterized urban area that is highly impacted by vehicular traffic. The metal concentrations in these samples were determined using ICP-OES (inductively coupled plasma-optical emission spectroscopy). Ca, Mg, Fe and Al were the most abundant metals present in TSP and PM10, with concentrations higher than 427 ng m-3. In PM2.5, the most abundant metals were Fe and Ca (307 and 60 ng m-3, respectively), while the concentrations of Mg, Zn and Cu were approximately 20 ng m-3. For PM10 and PM2.5, high correlations were obtained for Ca, Mg and Al, while the correlation of Ca and Mg with Fe was poor, thereby indicating that Ca, Mg and Al probably originate mainly from the resuspension of dust, while Fe may also be originated from an additional source, such as brake wear. Anthropogenic elements (Zn and Cu) had low correlation factors, suggesting different emission sources. The presence of Cu may be linked to the abrasion of brakes, and Zn may be attributed to tire wear. In fine particles, Ca, Mn, Fe, Zn and Cu were present in higher ratios than in crustal material. Because these particles are mainly observed due to the combustion processes, they may be present in gasoline, oil and lubricants. Fe was correlated with Mn, while correlation factors between Ca and Mg were relatively lower.
publishDate 2012
dc.date.none.fl_str_mv 2012-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000400007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000400007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-50532012000400007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.23 n.4 2012
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318173148676096