Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation

Detalhes bibliográficos
Autor(a) principal: Pereira,Eufrásia S.
Data de Publicação: 2019
Outros Autores: Chagas,Marcelo A., Rocha,Willian R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000300571
Resumo: In this article density functional theory (DFT)-based calculations were employed to investigate the electrochemistry of the antitumor ruthenium complexes trans-tetrachloro(dimethylsulfoxide)imidazole ruthenate(III) (NAMI-A) and trans-[tetrachlorobis(1.-indazole)ruthenate(III)] (KP1019), their hydrolysis products as well as their interactions with biological S-donors and N-donors targets as cysteine, glutathione and guanine nucleobase. The compounds exhibit different electrochemical behavior upon hydrolysis. While the reduction potential of NAMI-A increases up to 0.8 V upon hydrolysis, the reduction potential of KP1019 remains almost constant after the first hydrolysis. NAMI-A and KP1019 complexes have thermodynamic preference to be reduced prior to undergoing hydrolysis and, strong preference to undergo successive hydrolysis instead of interacting with the S-donor and N-donor ligands. Interaction with S-donor ligands in the unprotonated form is highly unfavorable, with the free energy in solution (ΔGsol) ≥ 18 kcal mol-1. For both complexes, the interaction with the guanine and glutathione are of the same magnitude (ΔGsol ca. –0.6 kcal mol-1) meaning that these ligands can compete for binding to the metallodrug.
id SBQ-2_ca89650b1461b808d6374cbe6bc45385
oai_identifier_str oai:scielo:S0103-50532019000300571
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigationdensity functional theory calculationsruthenium-based metallodrugsreduction potentialcompetitive biological reactionssolvent effectselectronic structure calculationsIn this article density functional theory (DFT)-based calculations were employed to investigate the electrochemistry of the antitumor ruthenium complexes trans-tetrachloro(dimethylsulfoxide)imidazole ruthenate(III) (NAMI-A) and trans-[tetrachlorobis(1.-indazole)ruthenate(III)] (KP1019), their hydrolysis products as well as their interactions with biological S-donors and N-donors targets as cysteine, glutathione and guanine nucleobase. The compounds exhibit different electrochemical behavior upon hydrolysis. While the reduction potential of NAMI-A increases up to 0.8 V upon hydrolysis, the reduction potential of KP1019 remains almost constant after the first hydrolysis. NAMI-A and KP1019 complexes have thermodynamic preference to be reduced prior to undergoing hydrolysis and, strong preference to undergo successive hydrolysis instead of interacting with the S-donor and N-donor ligands. Interaction with S-donor ligands in the unprotonated form is highly unfavorable, with the free energy in solution (ΔGsol) ≥ 18 kcal mol-1. For both complexes, the interaction with the guanine and glutathione are of the same magnitude (ΔGsol ca. –0.6 kcal mol-1) meaning that these ligands can compete for binding to the metallodrug.Sociedade Brasileira de Química2019-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000300571Journal of the Brazilian Chemical Society v.30 n.3 2019reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0103-5053.20180206info:eu-repo/semantics/openAccessPereira,Eufrásia S.Chagas,Marcelo A.Rocha,Willian R.eng2019-02-14T00:00:00Zoai:scielo:S0103-50532019000300571Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2019-02-14T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
spellingShingle Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
Pereira,Eufrásia S.
density functional theory calculations
ruthenium-based metallodrugs
reduction potential
competitive biological reactions
solvent effects
electronic structure calculations
title_short Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title_full Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title_fullStr Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title_full_unstemmed Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title_sort Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
author Pereira,Eufrásia S.
author_facet Pereira,Eufrásia S.
Chagas,Marcelo A.
Rocha,Willian R.
author_role author
author2 Chagas,Marcelo A.
Rocha,Willian R.
author2_role author
author
dc.contributor.author.fl_str_mv Pereira,Eufrásia S.
Chagas,Marcelo A.
Rocha,Willian R.
dc.subject.por.fl_str_mv density functional theory calculations
ruthenium-based metallodrugs
reduction potential
competitive biological reactions
solvent effects
electronic structure calculations
topic density functional theory calculations
ruthenium-based metallodrugs
reduction potential
competitive biological reactions
solvent effects
electronic structure calculations
description In this article density functional theory (DFT)-based calculations were employed to investigate the electrochemistry of the antitumor ruthenium complexes trans-tetrachloro(dimethylsulfoxide)imidazole ruthenate(III) (NAMI-A) and trans-[tetrachlorobis(1.-indazole)ruthenate(III)] (KP1019), their hydrolysis products as well as their interactions with biological S-donors and N-donors targets as cysteine, glutathione and guanine nucleobase. The compounds exhibit different electrochemical behavior upon hydrolysis. While the reduction potential of NAMI-A increases up to 0.8 V upon hydrolysis, the reduction potential of KP1019 remains almost constant after the first hydrolysis. NAMI-A and KP1019 complexes have thermodynamic preference to be reduced prior to undergoing hydrolysis and, strong preference to undergo successive hydrolysis instead of interacting with the S-donor and N-donor ligands. Interaction with S-donor ligands in the unprotonated form is highly unfavorable, with the free energy in solution (ΔGsol) ≥ 18 kcal mol-1. For both complexes, the interaction with the guanine and glutathione are of the same magnitude (ΔGsol ca. –0.6 kcal mol-1) meaning that these ligands can compete for binding to the metallodrug.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000300571
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000300571
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.21577/0103-5053.20180206
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.30 n.3 2019
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318181655773184