Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors

Detalhes bibliográficos
Autor(a) principal: Dawson, Margaret
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/15392
Resumo: CH3NH3SnI3 is an environmentally-friendly (lead-free) perovskite whose synthesis depends on SnI2. Some disadvantages of SnI2 include high cost and tin(IV) contamination. Thus, SnSO4 and ‎C16H30O4Sn are presented as cheaper alternatives and different synthesis conditions were studied: 110 oC/10 min, 150 oC/10 min and 150 oC/20 min. Based on X-ray diffraction results, CH3NH3SnI3 was successfully synthesized, being 110 oC/10 min sufficient for phase formation. However, annealing at 150 oC improved crystallinity irrespective of precursor while prolonged annealing time (20 min) was detrimental to the C16H30O4Sn-based perovskite. Film morphology differed by type of precursor. The bandgaps (1.37-1.59 eV) and photoluminescence emissions (831 nm) of the samples characterize them as visible light active semiconductors. Because CH3NH3SnI3 suffers from Sn2+ oxidation to Sn4+, some studies have proposed doping with metal cations. So far, Mn has not been tested. Thus, Mn (2% and 10% mol) doped CH3NH3SnI3 samples were synthesized and characterized. Mn did not disrupt the perovskite structure but slightly increased bandgap. Chlorine from the Mn precursor is not eliminated by annealing, thus could affect material properties. Regarding stability, Mn partially stabilized CH3NH3SnI3, indicating the need for an optimum level of doping. Mn doping does not seem to improve the photovoltaic properties of CH3NH3SnI3, but it should be noted that the solar cells were not optimized. Several questions about CH3NH3SnI3 cells are still open, including alternative TiO2 compatible with the same. Here, oxygen-deficient TiO2 powders were studied. Electron paramagnetic spectroscopy and X-ray photoelectron spectroscopy confirmed oxygen vacancy. Photocatalytic and photocurrent tests showed activity under visible light and an optimum level of oxygen vacancies for lower recombination and high charge separation, important properties for photovoltaic applications.
id SCAR_79373f5006f4ce5c7efd30bfc7afd351
oai_identifier_str oai:repositorio.ufscar.br:ufscar/15392
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Dawson, MargaretMorelli, Márcio Raymundohttp://lattes.cnpq.br/0172837599844991Oliveira, Cauê Ribeiro dehttp://lattes.cnpq.br/5321313558714462http://lattes.cnpq.br/57100234138749402021-12-21T14:11:27Z2021-12-21T14:11:27Z2020-02-14DAWSON, Margaret. Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors. 2020. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15392.https://repositorio.ufscar.br/handle/ufscar/15392CH3NH3SnI3 is an environmentally-friendly (lead-free) perovskite whose synthesis depends on SnI2. Some disadvantages of SnI2 include high cost and tin(IV) contamination. Thus, SnSO4 and ‎C16H30O4Sn are presented as cheaper alternatives and different synthesis conditions were studied: 110 oC/10 min, 150 oC/10 min and 150 oC/20 min. Based on X-ray diffraction results, CH3NH3SnI3 was successfully synthesized, being 110 oC/10 min sufficient for phase formation. However, annealing at 150 oC improved crystallinity irrespective of precursor while prolonged annealing time (20 min) was detrimental to the C16H30O4Sn-based perovskite. Film morphology differed by type of precursor. The bandgaps (1.37-1.59 eV) and photoluminescence emissions (831 nm) of the samples characterize them as visible light active semiconductors. Because CH3NH3SnI3 suffers from Sn2+ oxidation to Sn4+, some studies have proposed doping with metal cations. So far, Mn has not been tested. Thus, Mn (2% and 10% mol) doped CH3NH3SnI3 samples were synthesized and characterized. Mn did not disrupt the perovskite structure but slightly increased bandgap. Chlorine from the Mn precursor is not eliminated by annealing, thus could affect material properties. Regarding stability, Mn partially stabilized CH3NH3SnI3, indicating the need for an optimum level of doping. Mn doping does not seem to improve the photovoltaic properties of CH3NH3SnI3, but it should be noted that the solar cells were not optimized. Several questions about CH3NH3SnI3 cells are still open, including alternative TiO2 compatible with the same. Here, oxygen-deficient TiO2 powders were studied. Electron paramagnetic spectroscopy and X-ray photoelectron spectroscopy confirmed oxygen vacancy. Photocatalytic and photocurrent tests showed activity under visible light and an optimum level of oxygen vacancies for lower recombination and high charge separation, important properties for photovoltaic applications.CH3NH3SnI3 é uma perovskita ambientalmente amigável (sem chumbo) normalmente sintetizada a partir de Snl2, que apresenta algumas desvantagens como elevado custo e contaminação por Sn(IV). Diante disso, SnSO4 e C16H30O4Sn são apresentados como precursores alternativos para a síntese de CH3NH3SnI3 em diferentes temperaturas e tempos de tratamentos térmicos (110 oC /10 min, 150 oC /10 min e 150 oC /20 min). A eficácia da síntese de CH3NH3SnI3 a partir dos precursores apresentados foi confirmada por raio-X. O tratamento térmico a 110 oC /10 min foi suficiente para a formação de fase, a 150 oC/10min melhorou a cristalinidade, independentemente do precursor, porém a 150 oC/20 min foi prejudicial para a perovskita produzida com C16H30O4Sn. As energias de bandgaps entre 1,37-1,59 eV e valores de emissão de fotoluminescência de 831 nm confirmam que as amostras sintetizadas são semicondutores ativos sob luz visível. Além disso, diferentes morfologias de filmes foram obtidas para cada tipo de precursor utilizado. A CH3NH3SnI3 sintetizada a partir de SnI2 foi dopada com Mn ( 2% e 10% mol de MnCl2) a fim de controlar a sua oxidação. A caracterizacão das amostras dopadas mostrou que o Mn estabiliza parcialmente a CH3NH3SnI3 contra degradação, mas não resulta em nenhuma melhora do desempenho final das células solares. Além disso, o cloro proveniente do MnCl2 não foi eliminado durante o tratamento térmico, o que pode influenciar as propriedades finais do material. Observou-se que o Mn não alterou a estrutura da perovskita, mas aumentou ligeiramente a sua energia de bandgap, mas ainda são necessários estudos para otimizar o nível de dopagem. Várias questões sobre as células de CH3NH3SnI3 ainda estão abertas, incluindo o TiO2 alternativo compatível com as mesmas. Neste trabalho, pós de TiO2 deficientes em oxigênio foram estudados a partir da análise de espectroscopia paramagnética de elétrons e a espectroscopia de fotoelétrons de raios-X. Os resultados confirmaram a vacância de oxigênio. Os testes fotocatalíticos e fotocorrentes mostraram atividade sob luz visível, um nível ótimo de vacâncias de oxigênio para menor recombinação e alta separação de carga, propriedades importantes para aplicações fotovoltaicas.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 141704/2015-2engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessPerovskita orgânica-inorgânica de estanhoPerovskita de haleto de estanhoDopagem com MnPrecursor de estanhoTiO2 deficiente de oxigênioMaterial para célula solarOrganic-inorganic tin perovskiteTin halide perovskiteMn dopingTin precursorOxygen deficient TiO2Solar cell materialENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICASynthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductorsSíntese e caracterização de CH3NH3SnI3, CH3NH3SnI3 dopada com Mn e TiO2 deficiente em oxigênio como semicondutores ativos no visívelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALMargaret Dawson-Tese.pdfMargaret Dawson-Tese.pdfteseapplication/pdf5799471https://repositorio.ufscar.br/bitstream/ufscar/15392/1/Margaret%20Dawson-Tese.pdf677a5897e852146f6cf96bd3c1131cd1MD51BCO carta comprovante autoarquivamento.pdfBCO carta comprovante autoarquivamento.pdfCarta comprovante orientadorapplication/pdf416928https://repositorio.ufscar.br/bitstream/ufscar/15392/2/BCO%20carta%20comprovante%20autoarquivamento.pdf383b82c60ee351ff6fb614c9ea4cdef4MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/15392/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTMargaret Dawson-Tese.pdf.txtMargaret Dawson-Tese.pdf.txtExtracted texttext/plain318050https://repositorio.ufscar.br/bitstream/ufscar/15392/4/Margaret%20Dawson-Tese.pdf.txt84bd78bc996e85dbc38c51cc4b36e08dMD54BCO carta comprovante autoarquivamento.pdf.txtBCO carta comprovante autoarquivamento.pdf.txtExtracted texttext/plain1492https://repositorio.ufscar.br/bitstream/ufscar/15392/6/BCO%20carta%20comprovante%20autoarquivamento.pdf.txt6e903c300c7ba3b4effc4b9fd6936865MD56THUMBNAILMargaret Dawson-Tese.pdf.jpgMargaret Dawson-Tese.pdf.jpgIM Thumbnailimage/jpeg6396https://repositorio.ufscar.br/bitstream/ufscar/15392/5/Margaret%20Dawson-Tese.pdf.jpg7fc882c5816c6a1a1b297edba7a26cd8MD55BCO carta comprovante autoarquivamento.pdf.jpgBCO carta comprovante autoarquivamento.pdf.jpgIM Thumbnailimage/jpeg11070https://repositorio.ufscar.br/bitstream/ufscar/15392/7/BCO%20carta%20comprovante%20autoarquivamento.pdf.jpg1b18cfb47fd8c39260e26b88d865a702MD57ufscar/153922021-12-22 03:40:05.621oai:repositorio.ufscar.br:ufscar/15392Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222021-12-22T03:40:05Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors
dc.title.alternative.por.fl_str_mv Síntese e caracterização de CH3NH3SnI3, CH3NH3SnI3 dopada com Mn e TiO2 deficiente em oxigênio como semicondutores ativos no visível
title Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors
spellingShingle Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors
Dawson, Margaret
Perovskita orgânica-inorgânica de estanho
Perovskita de haleto de estanho
Dopagem com Mn
Precursor de estanho
TiO2 deficiente de oxigênio
Material para célula solar
Organic-inorganic tin perovskite
Tin halide perovskite
Mn doping
Tin precursor
Oxygen deficient TiO2
Solar cell material
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
title_short Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors
title_full Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors
title_fullStr Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors
title_full_unstemmed Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors
title_sort Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors
author Dawson, Margaret
author_facet Dawson, Margaret
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5710023413874940
dc.contributor.author.fl_str_mv Dawson, Margaret
dc.contributor.advisor1.fl_str_mv Morelli, Márcio Raymundo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0172837599844991
dc.contributor.advisor-co1.fl_str_mv Oliveira, Cauê Ribeiro de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5321313558714462
contributor_str_mv Morelli, Márcio Raymundo
Oliveira, Cauê Ribeiro de
dc.subject.por.fl_str_mv Perovskita orgânica-inorgânica de estanho
Perovskita de haleto de estanho
Dopagem com Mn
Precursor de estanho
TiO2 deficiente de oxigênio
Material para célula solar
topic Perovskita orgânica-inorgânica de estanho
Perovskita de haleto de estanho
Dopagem com Mn
Precursor de estanho
TiO2 deficiente de oxigênio
Material para célula solar
Organic-inorganic tin perovskite
Tin halide perovskite
Mn doping
Tin precursor
Oxygen deficient TiO2
Solar cell material
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
dc.subject.eng.fl_str_mv Organic-inorganic tin perovskite
Tin halide perovskite
Mn doping
Tin precursor
Oxygen deficient TiO2
Solar cell material
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
description CH3NH3SnI3 is an environmentally-friendly (lead-free) perovskite whose synthesis depends on SnI2. Some disadvantages of SnI2 include high cost and tin(IV) contamination. Thus, SnSO4 and ‎C16H30O4Sn are presented as cheaper alternatives and different synthesis conditions were studied: 110 oC/10 min, 150 oC/10 min and 150 oC/20 min. Based on X-ray diffraction results, CH3NH3SnI3 was successfully synthesized, being 110 oC/10 min sufficient for phase formation. However, annealing at 150 oC improved crystallinity irrespective of precursor while prolonged annealing time (20 min) was detrimental to the C16H30O4Sn-based perovskite. Film morphology differed by type of precursor. The bandgaps (1.37-1.59 eV) and photoluminescence emissions (831 nm) of the samples characterize them as visible light active semiconductors. Because CH3NH3SnI3 suffers from Sn2+ oxidation to Sn4+, some studies have proposed doping with metal cations. So far, Mn has not been tested. Thus, Mn (2% and 10% mol) doped CH3NH3SnI3 samples were synthesized and characterized. Mn did not disrupt the perovskite structure but slightly increased bandgap. Chlorine from the Mn precursor is not eliminated by annealing, thus could affect material properties. Regarding stability, Mn partially stabilized CH3NH3SnI3, indicating the need for an optimum level of doping. Mn doping does not seem to improve the photovoltaic properties of CH3NH3SnI3, but it should be noted that the solar cells were not optimized. Several questions about CH3NH3SnI3 cells are still open, including alternative TiO2 compatible with the same. Here, oxygen-deficient TiO2 powders were studied. Electron paramagnetic spectroscopy and X-ray photoelectron spectroscopy confirmed oxygen vacancy. Photocatalytic and photocurrent tests showed activity under visible light and an optimum level of oxygen vacancies for lower recombination and high charge separation, important properties for photovoltaic applications.
publishDate 2020
dc.date.issued.fl_str_mv 2020-02-14
dc.date.accessioned.fl_str_mv 2021-12-21T14:11:27Z
dc.date.available.fl_str_mv 2021-12-21T14:11:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DAWSON, Margaret. Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors. 2020. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15392.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/15392
identifier_str_mv DAWSON, Margaret. Synthesis and characterization of CH3NH3SnI3, Mn doped CH3NH3SnI3 and oxygen-deficient TiO2 as visible-light active semiconductors. 2020. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15392.
url https://repositorio.ufscar.br/handle/ufscar/15392
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/15392/1/Margaret%20Dawson-Tese.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15392/2/BCO%20carta%20comprovante%20autoarquivamento.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15392/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/15392/4/Margaret%20Dawson-Tese.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15392/6/BCO%20carta%20comprovante%20autoarquivamento.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15392/5/Margaret%20Dawson-Tese.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/15392/7/BCO%20carta%20comprovante%20autoarquivamento.pdf.jpg
bitstream.checksum.fl_str_mv 677a5897e852146f6cf96bd3c1131cd1
383b82c60ee351ff6fb614c9ea4cdef4
e39d27027a6cc9cb039ad269a5db8e34
84bd78bc996e85dbc38c51cc4b36e08d
6e903c300c7ba3b4effc4b9fd6936865
7fc882c5816c6a1a1b297edba7a26cd8
1b18cfb47fd8c39260e26b88d865a702
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1777472146173329408