Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption

Detalhes bibliográficos
Autor(a) principal: Say, Sait Muharrem
Data de Publicação: 2022
Outros Autores: Erdem, Tunahan, Ekinci, Kamil, Erdem, Beyza Öztürk, Sehri, Mustafa, Korkut, Sarp Sümer
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Semina. Ciências Agrárias (Online)
Texto Completo: https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/44719
Resumo: The drying experiments were performed at different temperatures of the drying air (40, 50, and 60°C) and air velocity of 2.5 and 3.5 m/s. Six thin-layer drying models were evaluated and fitted to the experimental moisture data. The fit quality of the models was evaluated using the determination coefficient, chi-square, and root mean square error. Among the selected models, the Midilli et al. model was found to be the best model for describing the drying behaviour of olive pomace. Charcoal is used as a domestic fuel for cooking and heating in many developing countries. It is an important green source for making barbecue, which is obtained from agricultural waste. Due to less CO2 emission, it reduces health risk and deforestation. The coal briquette carbonisation production process consists of a carbonisation stage and a forming stage. During the forming stage, the raw material is mixed with a suitable binder. The final stage of the charcoal process after formation is drying. In this study, the drying parameters of charcoal briquettes made from the olive pomace-making process were evaluated. Three different temperatures and velocities were selected for the drying applications. The low temperature drying process was performed at 60, 50, and 40°C with air velocities of 3 and 2.5. The results were in the range of 3 to 8 hours of drying time. The drying data were applied to six different mathematical models, namely 1Diffusion Approach, 2Henderson and Pabis, 3Two term exponential, 4Midilli et al., 5Page, and 6Wang and Singh Equation Models. The performances of these models were compared according to the coefficient of determination (R2), standard error of estimate (SEE), and residual sum of squares (RSS) between the observed and predicted moisture ratios. The Midilli et al. Diffusion Approach, and Page models described the drying curve satisfactorily in all drying methods.
id UEL-11_8459852d10e652fcc8d82b1c6269b318
oai_identifier_str oai:ojs.pkp.sfu.ca:article/44719
network_acronym_str UEL-11
network_name_str Semina. Ciências Agrárias (Online)
repository_id_str
spelling Drying kinetics of olive pomace-derived charcoal briquettes with energy consumptionCinética de secagem de briquetes de carvão derivados de bagaço de oliva com consumo de energiaCharcoalBriquetteDryingModelling.CarvãoBriqueteSecagemModelagem.The drying experiments were performed at different temperatures of the drying air (40, 50, and 60°C) and air velocity of 2.5 and 3.5 m/s. Six thin-layer drying models were evaluated and fitted to the experimental moisture data. The fit quality of the models was evaluated using the determination coefficient, chi-square, and root mean square error. Among the selected models, the Midilli et al. model was found to be the best model for describing the drying behaviour of olive pomace. Charcoal is used as a domestic fuel for cooking and heating in many developing countries. It is an important green source for making barbecue, which is obtained from agricultural waste. Due to less CO2 emission, it reduces health risk and deforestation. The coal briquette carbonisation production process consists of a carbonisation stage and a forming stage. During the forming stage, the raw material is mixed with a suitable binder. The final stage of the charcoal process after formation is drying. In this study, the drying parameters of charcoal briquettes made from the olive pomace-making process were evaluated. Three different temperatures and velocities were selected for the drying applications. The low temperature drying process was performed at 60, 50, and 40°C with air velocities of 3 and 2.5. The results were in the range of 3 to 8 hours of drying time. The drying data were applied to six different mathematical models, namely 1Diffusion Approach, 2Henderson and Pabis, 3Two term exponential, 4Midilli et al., 5Page, and 6Wang and Singh Equation Models. The performances of these models were compared according to the coefficient of determination (R2), standard error of estimate (SEE), and residual sum of squares (RSS) between the observed and predicted moisture ratios. The Midilli et al. Diffusion Approach, and Page models described the drying curve satisfactorily in all drying methods.Os experimentos de secagem foram realizados em diferentes temperaturas do ar de secagem (40, 50 e 60°C) e velocidades do ar de 2,5 e 3,5 m / s. Seis modelos de secagem em camada delgada foram avaliados e ajustados aos dados experimentais de umidade. A qualidade do ajuste dos modelos foi avaliada por meio do coeficiente de determinação, qui-quadrado e raiz quadrada média do erro. Dentre os modelos selecionados, o Midilli et al., modelo foi considerado o melhor modelo para descrever o comportamento de secagem do bagaço de azeitona O carvão vegetal é usado como combustível doméstico para cozinhar e aquecer em muitos países em desenvolvimento. É uma importante fonte verde para a confecção de churrasco, obtido a partir de resíduos agrícolas. Devido à menor emissão de CO2, reduz riscos saudáveis e desmatamentos. O processo de produção da carbonização do briquete de carvão consiste em uma etapa de carbonização e uma etapa de conformação. Durante a fase de formação, a matéria-prima é misturada com um aglutinante adequado. A etapa final do processo de carvão vegetal após a formação é a secagem. Neste estudo foram avaliados os parâmetros de secagem do briquete de carvão vegetal a partir do processo de fabricação de bagaço de azeitona. Três diferentes temperaturas e velocidades foram selecionadas para aplicações de secagem. O processo de secagem a baixa temperatura foi realizado aos 60; 50 e 40 C ° com velocidade do ar de 3; e 2.5. Os resultados obtidos ficaram na faixa de 3 a 8 horas de tempo de secagem. Os dados de secagem foram aplicados a seis modelos matemáticos diferentes, a saber; 1Abordagem de difusão, 2Henderson e pabis, 3Exponencial de dois termos, 4Midilli et., al., 5Página 6Modelos de equações de Wang e Singh. Os desempenhos desses modelos foram comparados de acordo com o coeficiente de determinação (R2), erro padrão da estimativa (SEE) e soma dos quadrados residuais (RSS), entre as razões de umidade observadas e previstas. Verificou-se que os modelos Midilli et al., Diffusion Aproach e Page descreveram a curva de secagem de forma satisfatória em todos os métodos de secagem.UEL2022-05-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/4471910.5433/1679-0359.2022v43n4p1805Semina: Ciências Agrárias; Vol. 43 No. 4 (2022); 1805-1822Semina: Ciências Agrárias; v. 43 n. 4 (2022); 1805-18221679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/44719/32032Copyright (c) 2022 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessSay, Sait MuharremErdem, TunahanEkinci, KamilErdem, Beyza ÖztürkSehri, MustafaKorkut, Sarp Sümer2022-09-16T23:18:58Zoai:ojs.pkp.sfu.ca:article/44719Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-09-16T23:18:58Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption
Cinética de secagem de briquetes de carvão derivados de bagaço de oliva com consumo de energia
title Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption
spellingShingle Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption
Say, Sait Muharrem
Charcoal
Briquette
Drying
Modelling.
Carvão
Briquete
Secagem
Modelagem.
title_short Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption
title_full Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption
title_fullStr Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption
title_full_unstemmed Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption
title_sort Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption
author Say, Sait Muharrem
author_facet Say, Sait Muharrem
Erdem, Tunahan
Ekinci, Kamil
Erdem, Beyza Öztürk
Sehri, Mustafa
Korkut, Sarp Sümer
author_role author
author2 Erdem, Tunahan
Ekinci, Kamil
Erdem, Beyza Öztürk
Sehri, Mustafa
Korkut, Sarp Sümer
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Say, Sait Muharrem
Erdem, Tunahan
Ekinci, Kamil
Erdem, Beyza Öztürk
Sehri, Mustafa
Korkut, Sarp Sümer
dc.subject.por.fl_str_mv Charcoal
Briquette
Drying
Modelling.
Carvão
Briquete
Secagem
Modelagem.
topic Charcoal
Briquette
Drying
Modelling.
Carvão
Briquete
Secagem
Modelagem.
description The drying experiments were performed at different temperatures of the drying air (40, 50, and 60°C) and air velocity of 2.5 and 3.5 m/s. Six thin-layer drying models were evaluated and fitted to the experimental moisture data. The fit quality of the models was evaluated using the determination coefficient, chi-square, and root mean square error. Among the selected models, the Midilli et al. model was found to be the best model for describing the drying behaviour of olive pomace. Charcoal is used as a domestic fuel for cooking and heating in many developing countries. It is an important green source for making barbecue, which is obtained from agricultural waste. Due to less CO2 emission, it reduces health risk and deforestation. The coal briquette carbonisation production process consists of a carbonisation stage and a forming stage. During the forming stage, the raw material is mixed with a suitable binder. The final stage of the charcoal process after formation is drying. In this study, the drying parameters of charcoal briquettes made from the olive pomace-making process were evaluated. Three different temperatures and velocities were selected for the drying applications. The low temperature drying process was performed at 60, 50, and 40°C with air velocities of 3 and 2.5. The results were in the range of 3 to 8 hours of drying time. The drying data were applied to six different mathematical models, namely 1Diffusion Approach, 2Henderson and Pabis, 3Two term exponential, 4Midilli et al., 5Page, and 6Wang and Singh Equation Models. The performances of these models were compared according to the coefficient of determination (R2), standard error of estimate (SEE), and residual sum of squares (RSS) between the observed and predicted moisture ratios. The Midilli et al. Diffusion Approach, and Page models described the drying curve satisfactorily in all drying methods.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/44719
10.5433/1679-0359.2022v43n4p1805
url https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/44719
identifier_str_mv 10.5433/1679-0359.2022v43n4p1805
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/44719/32032
dc.rights.driver.fl_str_mv Copyright (c) 2022 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UEL
publisher.none.fl_str_mv UEL
dc.source.none.fl_str_mv Semina: Ciências Agrárias; Vol. 43 No. 4 (2022); 1805-1822
Semina: Ciências Agrárias; v. 43 n. 4 (2022); 1805-1822
1679-0359
1676-546X
reponame:Semina. Ciências Agrárias (Online)
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Semina. Ciências Agrárias (Online)
collection Semina. Ciências Agrárias (Online)
repository.name.fl_str_mv Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv semina.agrarias@uel.br
_version_ 1799306086104170496