Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil

Detalhes bibliográficos
Autor(a) principal: De Jong, Pieter
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://repositorio.ufba.br/ri/handle/ri/24167
Resumo: As a result of global climate change, during the coming decades less rainfall and higher temperatures are projected for the Brazilian Northeast (NE). Consequently these regional climatic changes could severely impact hydroelectric generation in the NE as well as influence solar and wind power potential. The ongoing drought in the Brazilian NE region has caused hydroelectric generation to decline substantially during the last 5 years and in 2016 hydroelectricity only supplied 25% of the NE’s total demand. In contrast, wind power supplied 30% of demand and is expected to generate 55-60% of the NE’s electricity supply by 2020. Therefore, this paper is focused on both short term forecasting and long-term projections of renewable energy generation and resource availability. It also explores the economic, environmental and technical feasibility of renewable energy integration in the NE region of Brazil. First, the long-term impacts of climate change on the NE region’s hydroelectric and wind energy production are analysed. Particular attention is paid to the long-term projections of annual rainfall and streamflow in the São Francisco basin which could decline by approximately 47% and 80%, respectively, by 2050. On the other hand, wind energy potential is projected to increase substantially during the same period. This thesis also estimates the economic, social, and environmental viability of renewable and non-renewable generation technologies in Brazil. The Levelised Cost of Electricity (LCOE) including externalities is calculated for several different case study power plants, the majority of which are located in the Brazilian NE. It was found that wind power becomes the cheapest generation technology in the NE region, once all externality and transmission line costs are taken into consideration. The LCOE for the entire Northeast’s generation matrix is calculated for various configurations, including scenarios in which hydroelectric generation is restricted due to drought conditions. It was concluded that a generation mix in which wind power replaces all fossil fuel generation by 2020, could feasibly reduce the overall LCOE in the region by approximately 46% and substantially decrease CO2eq emissions. Two different methods are used to examine the limits of integrating high penetrations of variable renewable generation technologies into a power system with a large proportion of hydroelectric capacity. In the first method existing wind generation data from 16 wind farms is extrapolated in time and space, while the second method uses a numerical weather prediction model to simulate future wind energy generation in the NE region. Considering the minimum generation requirements of the São Francisco’s hydroelectric dams, the maximum wind energy penetration in the NE region is estimated to be approximately 50% before significant amounts of energy would need to be curtailed or exported to other Brazilian regions. Finally, this thesis reviews additional literature on energy storage and the impact of large scale variable renewable energy integration on grid stability and power quality. It was found that there are several existing technologies such as power factor and voltage regulation devices that can resolve these issues.
id UFBA-2_14207ff50e538b400618a94788ac7094
oai_identifier_str oai:repositorio.ufba.br:ri/24167
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling De Jong, PieterDe Jong, PieterTorres, Ednildo AndradeKiperstok, AsherDargaville, RogerDe Martino Jannuzzi, GilbertoLivio Soliano Pereira, OsvaldoFreire da Silva, KleberAugusto Souza Tanajura, ClementeAlexandre Beisl Viera de Melo, SilvioDargaville, Roger2017-09-06T10:26:26Z2017-09-06T10:26:26Z2017-09-062017-06-27http://repositorio.ufba.br/ri/handle/ri/24167As a result of global climate change, during the coming decades less rainfall and higher temperatures are projected for the Brazilian Northeast (NE). Consequently these regional climatic changes could severely impact hydroelectric generation in the NE as well as influence solar and wind power potential. The ongoing drought in the Brazilian NE region has caused hydroelectric generation to decline substantially during the last 5 years and in 2016 hydroelectricity only supplied 25% of the NE’s total demand. In contrast, wind power supplied 30% of demand and is expected to generate 55-60% of the NE’s electricity supply by 2020. Therefore, this paper is focused on both short term forecasting and long-term projections of renewable energy generation and resource availability. It also explores the economic, environmental and technical feasibility of renewable energy integration in the NE region of Brazil. First, the long-term impacts of climate change on the NE region’s hydroelectric and wind energy production are analysed. Particular attention is paid to the long-term projections of annual rainfall and streamflow in the São Francisco basin which could decline by approximately 47% and 80%, respectively, by 2050. On the other hand, wind energy potential is projected to increase substantially during the same period. This thesis also estimates the economic, social, and environmental viability of renewable and non-renewable generation technologies in Brazil. The Levelised Cost of Electricity (LCOE) including externalities is calculated for several different case study power plants, the majority of which are located in the Brazilian NE. It was found that wind power becomes the cheapest generation technology in the NE region, once all externality and transmission line costs are taken into consideration. The LCOE for the entire Northeast’s generation matrix is calculated for various configurations, including scenarios in which hydroelectric generation is restricted due to drought conditions. It was concluded that a generation mix in which wind power replaces all fossil fuel generation by 2020, could feasibly reduce the overall LCOE in the region by approximately 46% and substantially decrease CO2eq emissions. Two different methods are used to examine the limits of integrating high penetrations of variable renewable generation technologies into a power system with a large proportion of hydroelectric capacity. In the first method existing wind generation data from 16 wind farms is extrapolated in time and space, while the second method uses a numerical weather prediction model to simulate future wind energy generation in the NE region. Considering the minimum generation requirements of the São Francisco’s hydroelectric dams, the maximum wind energy penetration in the NE region is estimated to be approximately 50% before significant amounts of energy would need to be curtailed or exported to other Brazilian regions. Finally, this thesis reviews additional literature on energy storage and the impact of large scale variable renewable energy integration on grid stability and power quality. It was found that there are several existing technologies such as power factor and voltage regulation devices that can resolve these issues.Como consequência da mudança climática global, nas próximas décadas menos precipitação e temperaturas mais altas são projetados para Nordeste (NE) do Brasil. Consequentemente, essas mudanças climáticas regionais podem afetar severamente a geração hidrelétrica no NE, bem como influenciar o potencial de energia solar e eólica. A seca atual nessa região do Brasil fez com que a geração hidrelétrica caísse substancialmente durante os últimos 5 anos e em 2016, as usinas hidrelétricas apenas forneceram 25% da demanda total do NE. Em contraste, a energia eólica forneceu 30% da demanda e deverá gerar 55-60% do fornecimento de energia elétrica do NE até 2020. Portanto, este trabalho está focado tanto na previsão a curto quanto projeções a longo prazo da geração de energia renovável e disponibilidade de recursos. Ele também explora a viabilidade econômica, ambiental e técnica da integração de energias renováveis na região NE. Primeiramente, os impactos de longo prazo das mudanças climáticas na produção hidrelétrica e eólica da região NE são analisados. Especial atenção é dada às projeções de longo prazo de precipitação anual e fluxo na bacia do São Francisco, que podem diminuir em aproximadamente 47% e 80%, respectivamente, até 2050. Por outro lado, prevê-se que o potencial da energia eólica aumente substancialmente durante o mesmo período. Esta tese também estima a viabilidade econômica, social e ambiental das tecnologias de geração renováveis e não-renováveis no Brasil. O custo nivelado de energia elétrica (LCOE), incluindo externalidades, é calculado para diversas usinas de estudo de caso, a maioria localizada no NE. Verificou-se que, a energia eólica se torna a tecnologia de geração mais barata na região NE, uma vez que todos os custos de externalidades e de linhas de transmissão são levados em consideração. O LCOE para a matriz de geração do Nordeste é calculado para várias configurações, incluindo cenários em que a geração hidrelétrica é restrita devido às condições de seca. Concluiu-se que, uma mistura de geração em que a energia eólica substitui toda a geração de combustíveis fósseis até 2020, poderia reduzir o LCOE na região em aproximadamente 46% e diminuir substancialmente as emissões de CO2eq. Dois métodos diferentes são usados para examinar os limites da integração de altas penetrações de tecnologias de geração renovável variáveis em um sistema de energia com uma grande proporção de capacidade hidrelétrica. No primeiro método, dados de geração eólica existentes de 16 parques eólicos são extrapolados no tempo e no espaço, enquanto o segundo método utiliza um modelo de previsão numérica de tempo para simular a futura geração de energia eólica na região NE. Considerando as exigências mínimas de geração das hidrelétricas do São Francisco, estima-se que a penetração máxima de energia eólica na região NE seja de aproximadamente 50% antes que quantidades significativas de energia precisem ser desperdiçadas ou exportadas para outras regiões brasileiras. Finalmente, esta tese examina literatura adicional sobre armazenamento de energia e o impacto da integração de energia renovável variável em larga escala na estabilidade da rede elétrica e na qualidade da energia. Verificou-se que existem várias tecnologias existentes, como dispositivos de regulação de fator de potência e tensão que podem resolver estes problemas.Submitted by Pieter de Jong (pieterj@ufba.br) on 2017-09-06T00:37:40Z No. of bitstreams: 1 DE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdf: 4104557 bytes, checksum: 286729716f48be77c37ddb6f4cf2c93d (MD5)Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-09-06T10:26:26Z (GMT) No. of bitstreams: 1 DE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdf: 4104557 bytes, checksum: 286729716f48be77c37ddb6f4cf2c93d (MD5)Made available in DSpace on 2017-09-06T10:26:26Z (GMT). No. of bitstreams: 1 DE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdf: 4104557 bytes, checksum: 286729716f48be77c37ddb6f4cf2c93d (MD5)CAPES e FAPESB.Geração da Energia ElétricaTransmissão da Energia Elétrica, Distribuição da Energia ElétricaHidrologiaRenewable EnergyWind PowerSolar PowerHydroelectricityIntegrationForecastingForecasting, integration, and storage of renewable energy generation in the Northeast of Brazilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisEscola PolitécnicaPrograma de Pós-Graduação em Engenharia IndustrialUFBAbrasilinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALDE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdfDE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdfapplication/pdf4104557https://repositorio.ufba.br/bitstream/ri/24167/1/DE%20JONG%2c%20Pieter%20-%20Forecasting%2c%20integration%2c%20and%20storage%20of%20renewable%20energy%20generation%20in%20the%20Northeast%20of%20Brazil.pdf286729716f48be77c37ddb6f4cf2c93dMD51LICENSElicense.txtlicense.txttext/plain1345https://repositorio.ufba.br/bitstream/ri/24167/2/license.txtff6eaa8b858ea317fded99f125f5fcd0MD52TEXTDE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdf.txtDE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdf.txtExtracted texttext/plain432646https://repositorio.ufba.br/bitstream/ri/24167/3/DE%20JONG%2c%20Pieter%20-%20Forecasting%2c%20integration%2c%20and%20storage%20of%20renewable%20energy%20generation%20in%20the%20Northeast%20of%20Brazil.pdf.txtdc6143b57be9a78778d5c769a18c876cMD53ri/241672022-07-05 14:04:18.17oai:repositorio.ufba.br:ri/24167VGVybW8gZGUgTGljZW7vv71hLCBu77+9byBleGNsdXNpdm8sIHBhcmEgbyBkZXDvv71zaXRvIG5vIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBLgoKIFBlbG8gcHJvY2Vzc28gZGUgc3VibWlzc++/vW8gZGUgZG9jdW1lbnRvcywgbyBhdXRvciBvdSBzZXUgcmVwcmVzZW50YW50ZSBsZWdhbCwgYW8gYWNlaXRhciAKZXNzZSB0ZXJtbyBkZSBsaWNlbu+/vWEsIGNvbmNlZGUgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRhIEJhaGlhIApvIGRpcmVpdG8gZGUgbWFudGVyIHVtYSBj77+9cGlhIGVtIHNldSByZXBvc2l077+9cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCBkZSBwcmVzZXJ2Ye+/ve+/vW8uIApFc3NlcyB0ZXJtb3MsIG7vv71vIGV4Y2x1c2l2b3MsIG1hbnTvv71tIG9zIGRpcmVpdG9zIGRlIGF1dG9yL2NvcHlyaWdodCwgbWFzIGVudGVuZGUgbyBkb2N1bWVudG8gCmNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsIGRlc3NhIFVuaXZlcnNpZGFkZS4KCiBQYXJhIG9zIGRvY3VtZW50b3MgcHVibGljYWRvcyBjb20gcmVwYXNzZSBkZSBkaXJlaXRvcyBkZSBkaXN0cmlidWnvv73vv71vLCBlc3NlIHRlcm1vIGRlIGxpY2Vu77+9YSAKZW50ZW5kZSBxdWU6CgogTWFudGVuZG8gb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHJlcGFzc2Fkb3MgYSB0ZXJjZWlyb3MsIGVtIGNhc28gZGUgcHVibGljYe+/ve+/vWVzLCBvIHJlcG9zaXTvv71yaW8KcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIGludGVncmFsLCBtYXMgbGliZXJhIGFzIGluZm9ybWHvv73vv71lcyBzb2JyZSBvIGRvY3VtZW50bwooTWV0YWRhZG9zIGVzY3JpdGl2b3MpLgoKIERlc3RhIGZvcm1hLCBhdGVuZGVuZG8gYW9zIGFuc2Vpb3MgZGVzc2EgdW5pdmVyc2lkYWRlIGVtIG1hbnRlciBzdWEgcHJvZHXvv73vv71vIGNpZW5077+9ZmljYSBjb20gCmFzIHJlc3Ryae+/ve+/vWVzIGltcG9zdGFzIHBlbG9zIGVkaXRvcmVzIGRlIHBlcmnvv71kaWNvcy4KCiBQYXJhIGFzIHB1YmxpY2Hvv73vv71lcyBzZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbO+/vXRpY2EgZGUgQWNlc3NvIEFiZXJ0bywgb3MgZGVw77+9c2l0b3MgCmNvbXB1bHPvv71yaW9zIG5lc3NlIHJlcG9zaXTvv71yaW8gbWFudO+/vW0gb3MgZGlyZWl0b3MgYXV0b3JhaXMsIG1hcyBtYW5077+9bSBhY2Vzc28gaXJyZXN0cml0byAKYW8gbWV0YWRhZG9zIGUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0Ye+/ve+/vW8gZGVzc2UgdGVybW8gbu+/vW8gbmVjZXNzaXRhIGRlIGNvbnNlbnRpbWVudG8KIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgZXN0YXJlbSBlbSBpbmljaWF0aXZhcyBkZSBhY2Vzc28gYWJlcnRvLgo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:04:18Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil
title Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil
spellingShingle Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil
De Jong, Pieter
Geração da Energia Elétrica
Transmissão da Energia Elétrica, Distribuição da Energia Elétrica
Hidrologia
Renewable Energy
Wind Power
Solar Power
Hydroelectricity
Integration
Forecasting
title_short Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil
title_full Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil
title_fullStr Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil
title_full_unstemmed Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil
title_sort Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil
author De Jong, Pieter
author_facet De Jong, Pieter
author_role author
dc.contributor.author.fl_str_mv De Jong, Pieter
De Jong, Pieter
dc.contributor.advisor1.fl_str_mv Torres, Ednildo Andrade
dc.contributor.advisor-co1.fl_str_mv Kiperstok, Asher
Dargaville, Roger
dc.contributor.referee1.fl_str_mv De Martino Jannuzzi, Gilberto
Livio Soliano Pereira, Osvaldo
Freire da Silva, Kleber
Augusto Souza Tanajura, Clemente
Alexandre Beisl Viera de Melo, Silvio
Dargaville, Roger
contributor_str_mv Torres, Ednildo Andrade
Kiperstok, Asher
Dargaville, Roger
De Martino Jannuzzi, Gilberto
Livio Soliano Pereira, Osvaldo
Freire da Silva, Kleber
Augusto Souza Tanajura, Clemente
Alexandre Beisl Viera de Melo, Silvio
Dargaville, Roger
dc.subject.cnpq.fl_str_mv Geração da Energia Elétrica
Transmissão da Energia Elétrica, Distribuição da Energia Elétrica
Hidrologia
topic Geração da Energia Elétrica
Transmissão da Energia Elétrica, Distribuição da Energia Elétrica
Hidrologia
Renewable Energy
Wind Power
Solar Power
Hydroelectricity
Integration
Forecasting
dc.subject.por.fl_str_mv Renewable Energy
Wind Power
Solar Power
Hydroelectricity
Integration
Forecasting
description As a result of global climate change, during the coming decades less rainfall and higher temperatures are projected for the Brazilian Northeast (NE). Consequently these regional climatic changes could severely impact hydroelectric generation in the NE as well as influence solar and wind power potential. The ongoing drought in the Brazilian NE region has caused hydroelectric generation to decline substantially during the last 5 years and in 2016 hydroelectricity only supplied 25% of the NE’s total demand. In contrast, wind power supplied 30% of demand and is expected to generate 55-60% of the NE’s electricity supply by 2020. Therefore, this paper is focused on both short term forecasting and long-term projections of renewable energy generation and resource availability. It also explores the economic, environmental and technical feasibility of renewable energy integration in the NE region of Brazil. First, the long-term impacts of climate change on the NE region’s hydroelectric and wind energy production are analysed. Particular attention is paid to the long-term projections of annual rainfall and streamflow in the São Francisco basin which could decline by approximately 47% and 80%, respectively, by 2050. On the other hand, wind energy potential is projected to increase substantially during the same period. This thesis also estimates the economic, social, and environmental viability of renewable and non-renewable generation technologies in Brazil. The Levelised Cost of Electricity (LCOE) including externalities is calculated for several different case study power plants, the majority of which are located in the Brazilian NE. It was found that wind power becomes the cheapest generation technology in the NE region, once all externality and transmission line costs are taken into consideration. The LCOE for the entire Northeast’s generation matrix is calculated for various configurations, including scenarios in which hydroelectric generation is restricted due to drought conditions. It was concluded that a generation mix in which wind power replaces all fossil fuel generation by 2020, could feasibly reduce the overall LCOE in the region by approximately 46% and substantially decrease CO2eq emissions. Two different methods are used to examine the limits of integrating high penetrations of variable renewable generation technologies into a power system with a large proportion of hydroelectric capacity. In the first method existing wind generation data from 16 wind farms is extrapolated in time and space, while the second method uses a numerical weather prediction model to simulate future wind energy generation in the NE region. Considering the minimum generation requirements of the São Francisco’s hydroelectric dams, the maximum wind energy penetration in the NE region is estimated to be approximately 50% before significant amounts of energy would need to be curtailed or exported to other Brazilian regions. Finally, this thesis reviews additional literature on energy storage and the impact of large scale variable renewable energy integration on grid stability and power quality. It was found that there are several existing technologies such as power factor and voltage regulation devices that can resolve these issues.
publishDate 2017
dc.date.submitted.none.fl_str_mv 2017-06-27
dc.date.accessioned.fl_str_mv 2017-09-06T10:26:26Z
dc.date.available.fl_str_mv 2017-09-06T10:26:26Z
dc.date.issued.fl_str_mv 2017-09-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufba.br/ri/handle/ri/24167
url http://repositorio.ufba.br/ri/handle/ri/24167
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Escola Politécnica
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Industrial
dc.publisher.initials.fl_str_mv UFBA
dc.publisher.country.fl_str_mv brasil
publisher.none.fl_str_mv Escola Politécnica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/24167/1/DE%20JONG%2c%20Pieter%20-%20Forecasting%2c%20integration%2c%20and%20storage%20of%20renewable%20energy%20generation%20in%20the%20Northeast%20of%20Brazil.pdf
https://repositorio.ufba.br/bitstream/ri/24167/2/license.txt
https://repositorio.ufba.br/bitstream/ri/24167/3/DE%20JONG%2c%20Pieter%20-%20Forecasting%2c%20integration%2c%20and%20storage%20of%20renewable%20energy%20generation%20in%20the%20Northeast%20of%20Brazil.pdf.txt
bitstream.checksum.fl_str_mv 286729716f48be77c37ddb6f4cf2c93d
ff6eaa8b858ea317fded99f125f5fcd0
dc6143b57be9a78778d5c769a18c876c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1798057728903479296