Diffusion processes in vitreous silica revisited

Detalhes bibliográficos
Autor(a) principal: Nascimento, Marcio Luis Ferreira
Data de Publicação: 2007
Outros Autores: Zanotto, Edgar Dutra
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://www.repositorio.ufba.br/ri/handle/ufba/581
Resumo: We analyzed extensive literature data on crystal growth rate, u, viscosity, eta, and diffusivities of silicon and oxygen at deep and low undercoolings, between the glass transition, Tg, and the melting point, Tm, for four types of commercial silica glasses and thin films. The self-diffusion coefficients, Du, and the viscosity, Deta, in this network glass are extremely dependent on the impurity level, much more than in multi-component, depolymerized, silicate glasses. Despite this drawback, we combined such kinetics data in a systematic way and confirmed that normal growth is the operative mechanism of crystal growth. Then the effective diffusivity for viscous flow, Deta, and the controlling activation energy were compared with the activation energies and diffusivities calculated from crystal growth rates, Du, and with those of silicon and oxygen diffusion rates (DSi and DO, respectively). In the whole temperature range Du = Deta = DSi, but measured oxygen diffusivities were much higher than Du = Deta = DSi. We speculate that this fact can be explained because non-bridging oxygen diffuse much faster than bridging oxygen (more easily measured experimentally); or perhaps Si and bridging oxygen do not diffuse together. In addition, there is no sign of decoupling between silicon diffusivity and viscous flow from near the melting point to somewhat below Tg. We thus conclude that silicon controls the transport mechanism involved in crystal growth and viscous flow in this glass. The congruence of Du and Deta indicates that whatever the bond breaking and molecular reorientation mechanisms required for crystallization are, they are the same as those required for the atomic transport mechanism that controls viscous flow
id UFBA-2_abc675e6f79c02b806e0bd673950cc79
oai_identifier_str oai:repositorio.ufba.br:ufba/581
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Nascimento, Marcio Luis FerreiraZanotto, Edgar DutraNascimento, Marcio Luis FerreiraZanotto, Edgar Dutra2010-11-10T19:51:40Z2010-11-10T19:51:40Z200700319090http://www.repositorio.ufba.br/ri/handle/ufba/581Physics and Chemistry of Glasses, v. 48, p. 201-216We analyzed extensive literature data on crystal growth rate, u, viscosity, eta, and diffusivities of silicon and oxygen at deep and low undercoolings, between the glass transition, Tg, and the melting point, Tm, for four types of commercial silica glasses and thin films. The self-diffusion coefficients, Du, and the viscosity, Deta, in this network glass are extremely dependent on the impurity level, much more than in multi-component, depolymerized, silicate glasses. Despite this drawback, we combined such kinetics data in a systematic way and confirmed that normal growth is the operative mechanism of crystal growth. Then the effective diffusivity for viscous flow, Deta, and the controlling activation energy were compared with the activation energies and diffusivities calculated from crystal growth rates, Du, and with those of silicon and oxygen diffusion rates (DSi and DO, respectively). In the whole temperature range Du = Deta = DSi, but measured oxygen diffusivities were much higher than Du = Deta = DSi. We speculate that this fact can be explained because non-bridging oxygen diffuse much faster than bridging oxygen (more easily measured experimentally); or perhaps Si and bridging oxygen do not diffuse together. In addition, there is no sign of decoupling between silicon diffusivity and viscous flow from near the melting point to somewhat below Tg. We thus conclude that silicon controls the transport mechanism involved in crystal growth and viscous flow in this glass. The congruence of Du and Deta indicates that whatever the bond breaking and molecular reorientation mechanisms required for crystallization are, they are the same as those required for the atomic transport mechanism that controls viscous flowSubmitted by Marcio Luis Ferreira Nascimento (mlfn@ufba.br) on 2010-11-10T19:51:40Z No. of bitstreams: 1 DiffusionProcessesVitreousSilica-PCG48-Nascimento.pdf: 666742 bytes, checksum: 343c85ff48b00fb7276bce3077246e52 (MD5)Made available in DSpace on 2010-11-10T19:51:40Z (GMT). No. of bitstreams: 1 DiffusionProcessesVitreousSilica-PCG48-Nascimento.pdf: 666742 bytes, checksum: 343c85ff48b00fb7276bce3077246e52 (MD5) Previous issue date: 2007-01-01InglaterraVidroCristalizaçãoCrescimento de CristaisNucleaçãoDiffusion processes in vitreous silica revisitedArtigo de Periódicoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionengreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAinfo:eu-repo/semantics/openAccessORIGINALDiffusionProcessesVitreousSilica-PCG48-Nascimento.pdfDiffusionProcessesVitreousSilica-PCG48-Nascimento.pdfapplication/pdf666742https://repositorio.ufba.br/bitstream/ufba/581/1/DiffusionProcessesVitreousSilica-PCG48-Nascimento.pdf343c85ff48b00fb7276bce3077246e52MD51LICENSElicense.txtlicense.txttext/plain1908https://repositorio.ufba.br/bitstream/ufba/581/2/license.txtdc9716a7d7eb0c2d0ba67a1b426542bfMD52TEXTDiffusionProcessesVitreousSilica-PCG48-Nascimento.pdf.txtDiffusionProcessesVitreousSilica-PCG48-Nascimento.pdf.txtExtracted texttext/plain81146https://repositorio.ufba.br/bitstream/ufba/581/3/DiffusionProcessesVitreousSilica-PCG48-Nascimento.pdf.txt1fe2e5e00f237ee0eccb8dd58bb5a8aeMD53ufba/5812022-10-24 18:27:34.335oai:repositorio.ufba.br:ufba/581TGljZW5zZSBncmFudGVkIGJ5IE1hcmNpbyBMdWlzIEZlcnJlaXJhIE5hc2NpbWVudG8gKG1sZm5AdWZiYS5icikgb24gMjAxMC0xMS0xMFQxOTo1MTo0MFogKEdNVCk6CgpUZXJtbyBkZSBMaWNlbsOnYSwgbsOjbyBleGNsdXNpdm8sIHBhcmEgbyBkZXDDs3NpdG8gbm8gCnJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQkEKCiAgICBQZWxvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28gZGUgZG9jdW1lbnRvcywgbyBhdXRvciBvdSBzZXUKcmVwcmVzZW50YW50ZSBsZWdhbCwgYW8gYWNlaXRhciBlc3NlIHRlcm1vIGRlIGxpY2Vuw6dhLCBjb25jZWRlIGFvClJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRhIEJhaGlhIG8gZGlyZWl0bwpkZSBtYW50ZXIgdW1hIGPDs3BpYSBlbSBzZXUgcmVwb3NpdMOzcmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCAKZGUgcHJlc2VydmHDp8Ojby4gRXNzZSB0ZXJtbywgbsOjbyBleGNsdXNpdm8sIG1hbnTDqm0gb3MgZGlyZWl0b3MgZGUgCmF1dG9yL2NvcHlyaWdodCwgbWFzIGVudGVuZGUgbyBkb2N1bWVudG8gY29tbyBwYXJ0ZSBkbyBhY2Vydm8gaW50ZWxlY3R1YWwKIGRlc3NhIFVuaXZlcnNpZGFkZS4gCgogICAgUGFyYSBvcyBkb2N1bWVudG9zIHB1YmxpY2Fkb3MgY29tIHJlcGFzc2UgZGUgZGlyZWl0b3MgZGUgCmRpc3RyaWJ1acOnw6NvLCBlc3NlIHRlcm1vIGRlIGxpY2Vuw6dhIGVudGVuZGUgcXVlOiAKCiAgICBNYW50ZW5kbyBvc8KgIGRpcmVpdG9zIGF1dG9yYWlzLCByZXBhc3NhZG9zIGEgdGVyY2Vpcm9zLCBlbSBjYXNvIApkZSBwdWJsaWNhw6fDtWVzLCBvIHJlcG9zaXTDs3JpbyBwb2RlIHJlc3RyaW5naXIgbyBhY2Vzc28gYW8gdGV4dG8gCmludGVncmFsLCBtYXMgbGliZXJhIGFzIGluZm9ybWHDp8O1ZXMgc29icmUgbyBkb2N1bWVudG8gKE1ldGFkYWRvcyBkZXNjcml0aXZvcykuCiBEZXN0YSBmb3JtYSwgYXRlbmRlbmRvIGFvcyBhbnNlaW9zIGRlc3NhIHVuaXZlcnNpZGFkZSAKZW0gbWFudGVyIHN1YSBwcm9kdcOnw6NvIGNpZW50w63CrWZpY2EgY29tIGFzIHJlc3RyacOnw7VlcyBpbXBvc3RhcyBwZWxvcyAKZWRpdG9yZXMgZGUgcGVyacOzZGljb3MuIAoKICAgIFBhcmEgYXMgcHVibGljYcOnw7VlcyBlbSBpbmljaWF0aXZhcyBxdWUgc2VndWVtIGEgcG9sw63CrXRpY2EgZGUgCkFjZXNzbyBBYmVydG8sIG9zIGRlcMOzc2l0b3MgY29tcHVsc8OzcmlvcyBuZXNzZSByZXBvc2l0w7NyaW8gbWFudMOqbSAKb3MgZGlyZWl0b3MgYXV0b3JhaXMsIG1hcyBtYW50w6ptIG8gYWNlc3NvIGlycmVzdHJpdG8gYW8gbWV0YWRhZG9zIAplIHRleHRvIGNvbXBsZXRvLiBBc3NpbSwgYSBhY2VpdGHDp8OjbyBkZXNzZSB0ZXJtbyBuw6NvIG5lY2Vzc2l0YSBkZSAKY29uc2VudGltZW50byBwb3IgcGFydGUgZGUgYXV0b3Jlcy9kZXRlbnRvcmVzIGRvcyBkaXJlaXRvcywgcG9yIAplc3RhcmVtIGVtIGluaWNpYXRpdmFzIGRlIGFjZXNzbyBhYmVydG8uCgogICAgRW0gYW1ib3MgbyBjYXNvLCBlc3NlIHRlcm1vIGRlIGxpY2Vuw6dhLCBwb2RlIHNlciBhY2VpdG8gcGVsbyAKYXV0b3IsIGRldGVudG9yZXMgZGUgZGlyZWl0b3MgZS9vdSB0ZXJjZWlyb3MgYW1wYXJhZG9zIHBlbGEgCnVuaXZlcnNpZGFkZS4gRGV2aWRvIGFvcyBkaWZlcmVudGVzIHByb2Nlc3NvcyBwZWxvIHF1YWwgYSBzdWJtaXNzw6NvIApwb2RlIG9jb3JyZXIsIG8gcmVwb3NpdMOzcmlvIHBlcm1pdGUgYSBhY2VpdGHDp8OjbyBkYSBsaWNlbsOnYSBwb3IgCnRlcmNlaXJvcywgc29tZW50ZSBub3MgY2Fzb3MgZGUgZG9jdW1lbnRvcyBwcm9kdXppZG9zIHBvciBpbnRlZ3JhbnRlcyAKZGEgVUZCQSBlIHN1Ym1ldGlkb3MgcG9yIHBlc3NvYXMgYW1wYXJhZGFzIHBvciBlc3RhIGluc3RpdHVpw6fDo28KRepositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-10-24T21:27:34Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.en.fl_str_mv Diffusion processes in vitreous silica revisited
title Diffusion processes in vitreous silica revisited
spellingShingle Diffusion processes in vitreous silica revisited
Nascimento, Marcio Luis Ferreira
Vidro
Cristalização
Crescimento de Cristais
Nucleação
title_short Diffusion processes in vitreous silica revisited
title_full Diffusion processes in vitreous silica revisited
title_fullStr Diffusion processes in vitreous silica revisited
title_full_unstemmed Diffusion processes in vitreous silica revisited
title_sort Diffusion processes in vitreous silica revisited
author Nascimento, Marcio Luis Ferreira
author_facet Nascimento, Marcio Luis Ferreira
Zanotto, Edgar Dutra
author_role author
author2 Zanotto, Edgar Dutra
author2_role author
dc.contributor.author.fl_str_mv Nascimento, Marcio Luis Ferreira
Zanotto, Edgar Dutra
Nascimento, Marcio Luis Ferreira
Zanotto, Edgar Dutra
dc.subject.eng.fl_str_mv Vidro
Cristalização
Crescimento de Cristais
Nucleação
topic Vidro
Cristalização
Crescimento de Cristais
Nucleação
description We analyzed extensive literature data on crystal growth rate, u, viscosity, eta, and diffusivities of silicon and oxygen at deep and low undercoolings, between the glass transition, Tg, and the melting point, Tm, for four types of commercial silica glasses and thin films. The self-diffusion coefficients, Du, and the viscosity, Deta, in this network glass are extremely dependent on the impurity level, much more than in multi-component, depolymerized, silicate glasses. Despite this drawback, we combined such kinetics data in a systematic way and confirmed that normal growth is the operative mechanism of crystal growth. Then the effective diffusivity for viscous flow, Deta, and the controlling activation energy were compared with the activation energies and diffusivities calculated from crystal growth rates, Du, and with those of silicon and oxygen diffusion rates (DSi and DO, respectively). In the whole temperature range Du = Deta = DSi, but measured oxygen diffusivities were much higher than Du = Deta = DSi. We speculate that this fact can be explained because non-bridging oxygen diffuse much faster than bridging oxygen (more easily measured experimentally); or perhaps Si and bridging oxygen do not diffuse together. In addition, there is no sign of decoupling between silicon diffusivity and viscous flow from near the melting point to somewhat below Tg. We thus conclude that silicon controls the transport mechanism involved in crystal growth and viscous flow in this glass. The congruence of Du and Deta indicates that whatever the bond breaking and molecular reorientation mechanisms required for crystallization are, they are the same as those required for the atomic transport mechanism that controls viscous flow
publishDate 2007
dc.date.issued.fl_str_mv 2007
dc.date.accessioned.fl_str_mv 2010-11-10T19:51:40Z
dc.date.available.fl_str_mv 2010-11-10T19:51:40Z
dc.type.driver.fl_str_mv Artigo de Periódico
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.ufba.br/ri/handle/ufba/581
dc.identifier.issn.none.fl_str_mv 00319090
dc.identifier.number.en.fl_str_mv Physics and Chemistry of Glasses, v. 48, p. 201-216
identifier_str_mv 00319090
Physics and Chemistry of Glasses, v. 48, p. 201-216
url http://www.repositorio.ufba.br/ri/handle/ufba/581
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ufba/581/1/DiffusionProcessesVitreousSilica-PCG48-Nascimento.pdf
https://repositorio.ufba.br/bitstream/ufba/581/2/license.txt
https://repositorio.ufba.br/bitstream/ufba/581/3/DiffusionProcessesVitreousSilica-PCG48-Nascimento.pdf.txt
bitstream.checksum.fl_str_mv 343c85ff48b00fb7276bce3077246e52
dc9716a7d7eb0c2d0ba67a1b426542bf
1fe2e5e00f237ee0eccb8dd58bb5a8ae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1793970036243693568