Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses

Detalhes bibliográficos
Autor(a) principal: Nascimento, Marcio Luis Ferreira
Data de Publicação: 2010
Outros Autores: Rodrigues, Ana Candida Martins, Souquet, Jean Louis
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://www.repositorio.ufba.br/ri/handle/ufba/566
Resumo: Experimental data on electrical conductivity are presented for 43 glass compositions in the xLi2O.(1-x)SiO2 system (0.05 < x < 0.67). The data are presented herein as a function of temperature and in isothermal plots as a function of the Li2O molar ratio x. Below Tg, the experimental ionic conductivity of all the compositions follows an Arrhenius law, sigma=sigma0exp(-EA/RT). The large quantity of experimental data minimizes the experimental inaccuracy in glass composition and conductivity measurements, thus allowing for accurate estimates of the mean values of the pre-exponential term (sigma0) of the Arrhenius expression and the activation energy (EA), as well as a precise assessment of the variations in isothermal conductivity with the molar ratio, x. The value of the pre-exponential term and the variation of isothermal conductivity and activation energy with x are then interpreted by reference to general concepts for ionic transport in solids, and to the so-called weak electrolyte theory. The Anderson and Stuart model is employed to estimate the absolute values of activation energy. The association of the intrinsic cationic pair model and the weak electrolyte theory provides a good description of the variations in electrical conductivity and activation energy as a function of the Li2O molar ratio. The Anderson and Stuart model leads to consistent absolute values of activation energy only if an arbitrarily chosen value of jump distance is employed in the corresponding expression
id UFBA-2_bc7eb399cf9c3b000827a7322e95d8b6
oai_identifier_str oai:repositorio.ufba.br:ufba/566
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Nascimento, Marcio Luis FerreiraRodrigues, Ana Candida MartinsSouquet, Jean LouisNascimento, Marcio Luis FerreiraRodrigues, Ana Candida MartinsSouquet, Jean Louis2010-11-10T18:21:37Z2010-11-10T18:21:37Z2010-0200319090http://www.repositorio.ufba.br/ri/handle/ufba/566Physics and Chemistry of Glasses v. 51 p. 69-77Experimental data on electrical conductivity are presented for 43 glass compositions in the xLi2O.(1-x)SiO2 system (0.05 < x < 0.67). The data are presented herein as a function of temperature and in isothermal plots as a function of the Li2O molar ratio x. Below Tg, the experimental ionic conductivity of all the compositions follows an Arrhenius law, sigma=sigma0exp(-EA/RT). The large quantity of experimental data minimizes the experimental inaccuracy in glass composition and conductivity measurements, thus allowing for accurate estimates of the mean values of the pre-exponential term (sigma0) of the Arrhenius expression and the activation energy (EA), as well as a precise assessment of the variations in isothermal conductivity with the molar ratio, x. The value of the pre-exponential term and the variation of isothermal conductivity and activation energy with x are then interpreted by reference to general concepts for ionic transport in solids, and to the so-called weak electrolyte theory. The Anderson and Stuart model is employed to estimate the absolute values of activation energy. The association of the intrinsic cationic pair model and the weak electrolyte theory provides a good description of the variations in electrical conductivity and activation energy as a function of the Li2O molar ratio. The Anderson and Stuart model leads to consistent absolute values of activation energy only if an arbitrarily chosen value of jump distance is employed in the corresponding expressionSubmitted by Márcio Nascimento (mlfn@ufba.br) on 2010-11-10T18:21:37Z No. of bitstreams: 1 MicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdf: 583617 bytes, checksum: 9414672b89064fa1db07e41f57e058b9 (MD5)Made available in DSpace on 2010-11-10T18:21:37Z (GMT). No. of bitstreams: 1 MicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdf: 583617 bytes, checksum: 9414672b89064fa1db07e41f57e058b9 (MD5) Previous issue date: 2010-02-01InglaterraSociety of Glass TechnologyVidroCondutividadeModeloRavaine-SouquetEletrolito SolidoCondução IonicaMicroscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glassesArtigo de Periódicoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionengreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAinfo:eu-repo/semantics/openAccessORIGINALMicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdfMicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdfapplication/pdf583617https://repositorio.ufba.br/bitstream/ufba/566/1/MicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdf9414672b89064fa1db07e41f57e058b9MD51LICENSElicense.txtlicense.txttext/plain1895https://repositorio.ufba.br/bitstream/ufba/566/2/license.txt2bd1c40e6c5ea6873906e51892478acbMD52TEXTMicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdf.txtMicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdf.txtExtracted texttext/plain43320https://repositorio.ufba.br/bitstream/ufba/566/3/MicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdf.txtc2efb5edbd29134be5dc8a0178367a52MD53ufba/5662022-10-24 19:48:57.17oai:repositorio.ufba.br:ufba/566TGljZW5zZSBncmFudGVkIGJ5IE3DoXJjaW8gTmFzY2ltZW50byAobWxmbkB1ZmJhLmJyKSBvbiAyMDEwLTExLTEwVDE4OjIxOjM3WiAoR01UKToKClRlcm1vIGRlIExpY2Vuw6dhLCBuw6NvIGV4Y2x1c2l2bywgcGFyYSBvIGRlcMOzc2l0byBubyAKcmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZCQQoKICAgIFBlbG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbyBkZSBkb2N1bWVudG9zLCBvIGF1dG9yIG91IHNldQpyZXByZXNlbnRhbnRlIGxlZ2FsLCBhbyBhY2VpdGFyIGVzc2UgdGVybW8gZGUgbGljZW7Dp2EsIGNvbmNlZGUgYW8KUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgQmFoaWEgbyBkaXJlaXRvCmRlIG1hbnRlciB1bWEgY8OzcGlhIGVtIHNldSByZXBvc2l0w7NyaW8gY29tIGEgZmluYWxpZGFkZSwgcHJpbWVpcmEsIApkZSBwcmVzZXJ2YcOnw6NvLiBFc3NlIHRlcm1vLCBuw6NvIGV4Y2x1c2l2bywgbWFudMOqbSBvcyBkaXJlaXRvcyBkZSAKYXV0b3IvY29weXJpZ2h0LCBtYXMgZW50ZW5kZSBvIGRvY3VtZW50byBjb21vIHBhcnRlIGRvIGFjZXJ2byBpbnRlbGVjdHVhbAogZGVzc2EgVW5pdmVyc2lkYWRlLiAKCiAgICBQYXJhIG9zIGRvY3VtZW50b3MgcHVibGljYWRvcyBjb20gcmVwYXNzZSBkZSBkaXJlaXRvcyBkZSAKZGlzdHJpYnVpw6fDo28sIGVzc2UgdGVybW8gZGUgbGljZW7Dp2EgZW50ZW5kZSBxdWU6IAoKICAgIE1hbnRlbmRvIG9zwqAgZGlyZWl0b3MgYXV0b3JhaXMsIHJlcGFzc2Fkb3MgYSB0ZXJjZWlyb3MsIGVtIGNhc28gCmRlIHB1YmxpY2HDp8O1ZXMsIG8gcmVwb3NpdMOzcmlvIHBvZGUgcmVzdHJpbmdpciBvIGFjZXNzbyBhbyB0ZXh0byAKaW50ZWdyYWwsIG1hcyBsaWJlcmEgYXMgaW5mb3JtYcOnw7VlcyBzb2JyZSBvIGRvY3VtZW50byAoTWV0YWRhZG9zIGRlc2NyaXRpdm9zKS4KIERlc3RhIGZvcm1hLCBhdGVuZGVuZG8gYW9zIGFuc2Vpb3MgZGVzc2EgdW5pdmVyc2lkYWRlIAplbSBtYW50ZXIgc3VhIHByb2R1w6fDo28gY2llbnTDrcKtZmljYSBjb20gYXMgcmVzdHJpw6fDtWVzIGltcG9zdGFzIHBlbG9zIAplZGl0b3JlcyBkZSBwZXJpw7NkaWNvcy4gCgogICAgUGFyYSBhcyBwdWJsaWNhw6fDtWVzIGVtIGluaWNpYXRpdmFzIHF1ZSBzZWd1ZW0gYSBwb2zDrcKtdGljYSBkZSAKQWNlc3NvIEFiZXJ0bywgb3MgZGVww7NzaXRvcyBjb21wdWxzw7NyaW9zIG5lc3NlIHJlcG9zaXTDs3JpbyBtYW50w6ptIApvcyBkaXJlaXRvcyBhdXRvcmFpcywgbWFzIG1hbnTDqm0gbyBhY2Vzc28gaXJyZXN0cml0byBhbyBtZXRhZGFkb3MgCmUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0YcOnw6NvIGRlc3NlIHRlcm1vIG7Do28gbmVjZXNzaXRhIGRlIApjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgCmVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KCiAgICBFbSBhbWJvcyBvIGNhc28sIGVzc2UgdGVybW8gZGUgbGljZW7Dp2EsIHBvZGUgc2VyIGFjZWl0byBwZWxvIAphdXRvciwgZGV0ZW50b3JlcyBkZSBkaXJlaXRvcyBlL291IHRlcmNlaXJvcyBhbXBhcmFkb3MgcGVsYSAKdW5pdmVyc2lkYWRlLiBEZXZpZG8gYW9zIGRpZmVyZW50ZXMgcHJvY2Vzc29zIHBlbG8gcXVhbCBhIHN1Ym1pc3PDo28gCnBvZGUgb2NvcnJlciwgbyByZXBvc2l0w7NyaW8gcGVybWl0ZSBhIGFjZWl0YcOnw6NvIGRhIGxpY2Vuw6dhIHBvciAKdGVyY2Vpcm9zLCBzb21lbnRlIG5vcyBjYXNvcyBkZSBkb2N1bWVudG9zIHByb2R1emlkb3MgcG9yIGludGVncmFudGVzIApkYSBVRkJBIGUgc3VibWV0aWRvcyBwb3IgcGVzc29hcyBhbXBhcmFkYXMgcG9yIGVzdGEgaW5zdGl0dWnDp8Ojbwo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-10-24T22:48:57Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.en.fl_str_mv Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses
title Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses
spellingShingle Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses
Nascimento, Marcio Luis Ferreira
Vidro
Condutividade
Modelo
Ravaine-Souquet
Eletrolito Solido
Condução Ionica
title_short Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses
title_full Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses
title_fullStr Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses
title_full_unstemmed Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses
title_sort Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses
author Nascimento, Marcio Luis Ferreira
author_facet Nascimento, Marcio Luis Ferreira
Rodrigues, Ana Candida Martins
Souquet, Jean Louis
author_role author
author2 Rodrigues, Ana Candida Martins
Souquet, Jean Louis
author2_role author
author
dc.contributor.author.fl_str_mv Nascimento, Marcio Luis Ferreira
Rodrigues, Ana Candida Martins
Souquet, Jean Louis
Nascimento, Marcio Luis Ferreira
Rodrigues, Ana Candida Martins
Souquet, Jean Louis
dc.subject.eng.fl_str_mv Vidro
Condutividade
Modelo
Ravaine-Souquet
Eletrolito Solido
Condução Ionica
topic Vidro
Condutividade
Modelo
Ravaine-Souquet
Eletrolito Solido
Condução Ionica
description Experimental data on electrical conductivity are presented for 43 glass compositions in the xLi2O.(1-x)SiO2 system (0.05 < x < 0.67). The data are presented herein as a function of temperature and in isothermal plots as a function of the Li2O molar ratio x. Below Tg, the experimental ionic conductivity of all the compositions follows an Arrhenius law, sigma=sigma0exp(-EA/RT). The large quantity of experimental data minimizes the experimental inaccuracy in glass composition and conductivity measurements, thus allowing for accurate estimates of the mean values of the pre-exponential term (sigma0) of the Arrhenius expression and the activation energy (EA), as well as a precise assessment of the variations in isothermal conductivity with the molar ratio, x. The value of the pre-exponential term and the variation of isothermal conductivity and activation energy with x are then interpreted by reference to general concepts for ionic transport in solids, and to the so-called weak electrolyte theory. The Anderson and Stuart model is employed to estimate the absolute values of activation energy. The association of the intrinsic cationic pair model and the weak electrolyte theory provides a good description of the variations in electrical conductivity and activation energy as a function of the Li2O molar ratio. The Anderson and Stuart model leads to consistent absolute values of activation energy only if an arbitrarily chosen value of jump distance is employed in the corresponding expression
publishDate 2010
dc.date.accessioned.fl_str_mv 2010-11-10T18:21:37Z
dc.date.available.fl_str_mv 2010-11-10T18:21:37Z
dc.date.issued.fl_str_mv 2010-02
dc.type.driver.fl_str_mv Artigo de Periódico
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.ufba.br/ri/handle/ufba/566
dc.identifier.issn.none.fl_str_mv 00319090
dc.identifier.number.en.fl_str_mv Physics and Chemistry of Glasses v. 51 p. 69-77
identifier_str_mv 00319090
Physics and Chemistry of Glasses v. 51 p. 69-77
url http://www.repositorio.ufba.br/ri/handle/ufba/566
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Society of Glass Technology
publisher.none.fl_str_mv Society of Glass Technology
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ufba/566/1/MicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdf
https://repositorio.ufba.br/bitstream/ufba/566/2/license.txt
https://repositorio.ufba.br/bitstream/ufba/566/3/MicroscopicThermodynamicConductivityLithiumSilicate-PCG51-NascimentoSouquet.pdf.txt
bitstream.checksum.fl_str_mv 9414672b89064fa1db07e41f57e058b9
2bd1c40e6c5ea6873906e51892478acb
c2efb5edbd29134be5dc8a0178367a52
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1793970036158758912