Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista ciência agronômica (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902013000300007 |
Resumo: | This study aimed to develop classifiers based on different combinations of spectral bands and vegetation indices from original, segmented and reflectance images in order to determine the levels of leaf nitrogen and chlorophyll in the bean, and to define the best time and best variables. A remote-sensing system was used, consisting of a helium balloon and two small-format digital cameras. Besides the individual spectral bands, four vegetation indices were tested: simple ratio, normalized difference, normalized difference in the green band, and modified-chlorophyll absorption. The classifiers proved to be efficient in determining levels of leaf nitrogen and chlorophyll. The best time for determining leaf N content was at 13 DAE (stage V4). The best classifiers for that time used as input variables two indices from segmented reflectance images, one index related to the canopy structure and the other related to chlorophyll, with a Kappa ranging from 0.26 to 0.31. The best time to discriminate leaf chlorophyll content was 21 DAE (stage V4). The best classifier used as input variables two original images, one in the red band and one in the blue with a Kappa of 0.47. |
id |
UFC-2_1d5949d957f1ad88ea19dac45a982a6b |
---|---|
oai_identifier_str |
oai:scielo:S1806-66902013000300007 |
network_acronym_str |
UFC-2 |
network_name_str |
Revista ciência agronômica (Online) |
repository_id_str |
|
spelling |
Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indicesPrecision farmingRemote sensingNitrogen dosageThis study aimed to develop classifiers based on different combinations of spectral bands and vegetation indices from original, segmented and reflectance images in order to determine the levels of leaf nitrogen and chlorophyll in the bean, and to define the best time and best variables. A remote-sensing system was used, consisting of a helium balloon and two small-format digital cameras. Besides the individual spectral bands, four vegetation indices were tested: simple ratio, normalized difference, normalized difference in the green band, and modified-chlorophyll absorption. The classifiers proved to be efficient in determining levels of leaf nitrogen and chlorophyll. The best time for determining leaf N content was at 13 DAE (stage V4). The best classifiers for that time used as input variables two indices from segmented reflectance images, one index related to the canopy structure and the other related to chlorophyll, with a Kappa ranging from 0.26 to 0.31. The best time to discriminate leaf chlorophyll content was 21 DAE (stage V4). The best classifier used as input variables two original images, one in the red band and one in the blue with a Kappa of 0.47.Universidade Federal do Ceará2013-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902013000300007Revista Ciência Agronômica v.44 n.3 2013reponame:Revista ciência agronômica (Online)instname:Universidade Federal do Ceará (UFC)instacron:UFC10.1590/S1806-66902013000300007info:eu-repo/semantics/openAccessAbrahão,Selma AlvesPinto,Francisco de Assis de CarvalhoQueiroz,Daniel Marçal deSantos,Nerilson TerraCarneiro,José Eustáquio de Souzaeng2013-05-21T00:00:00Zoai:scielo:S1806-66902013000300007Revistahttp://www.ccarevista.ufc.br/PUBhttps://old.scielo.br/oai/scielo-oai.php||alekdutra@ufc.br|| ccarev@ufc.br1806-66900045-6888opendoar:2013-05-21T00:00Revista ciência agronômica (Online) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices |
title |
Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices |
spellingShingle |
Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices Abrahão,Selma Alves Precision farming Remote sensing Nitrogen dosage |
title_short |
Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices |
title_full |
Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices |
title_fullStr |
Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices |
title_full_unstemmed |
Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices |
title_sort |
Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices |
author |
Abrahão,Selma Alves |
author_facet |
Abrahão,Selma Alves Pinto,Francisco de Assis de Carvalho Queiroz,Daniel Marçal de Santos,Nerilson Terra Carneiro,José Eustáquio de Souza |
author_role |
author |
author2 |
Pinto,Francisco de Assis de Carvalho Queiroz,Daniel Marçal de Santos,Nerilson Terra Carneiro,José Eustáquio de Souza |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Abrahão,Selma Alves Pinto,Francisco de Assis de Carvalho Queiroz,Daniel Marçal de Santos,Nerilson Terra Carneiro,José Eustáquio de Souza |
dc.subject.por.fl_str_mv |
Precision farming Remote sensing Nitrogen dosage |
topic |
Precision farming Remote sensing Nitrogen dosage |
description |
This study aimed to develop classifiers based on different combinations of spectral bands and vegetation indices from original, segmented and reflectance images in order to determine the levels of leaf nitrogen and chlorophyll in the bean, and to define the best time and best variables. A remote-sensing system was used, consisting of a helium balloon and two small-format digital cameras. Besides the individual spectral bands, four vegetation indices were tested: simple ratio, normalized difference, normalized difference in the green band, and modified-chlorophyll absorption. The classifiers proved to be efficient in determining levels of leaf nitrogen and chlorophyll. The best time for determining leaf N content was at 13 DAE (stage V4). The best classifiers for that time used as input variables two indices from segmented reflectance images, one index related to the canopy structure and the other related to chlorophyll, with a Kappa ranging from 0.26 to 0.31. The best time to discriminate leaf chlorophyll content was 21 DAE (stage V4). The best classifier used as input variables two original images, one in the red band and one in the blue with a Kappa of 0.47. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902013000300007 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902013000300007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1806-66902013000300007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Universidade Federal do Ceará |
publisher.none.fl_str_mv |
Universidade Federal do Ceará |
dc.source.none.fl_str_mv |
Revista Ciência Agronômica v.44 n.3 2013 reponame:Revista ciência agronômica (Online) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Revista ciência agronômica (Online) |
collection |
Revista ciência agronômica (Online) |
repository.name.fl_str_mv |
Revista ciência agronômica (Online) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
||alekdutra@ufc.br|| ccarev@ufc.br |
_version_ |
1750297486696644608 |