Kondo effect in disordered graphene

Detalhes bibliográficos
Autor(a) principal: Miranda, Vladimir Gonçalves
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal Fluminense (RIUFF)
Texto Completo: https://app.uff.br/riuff/handle/1/6166
Resumo: Recent experiments found evidences that vacancies give rise to local magnetic moments in graphene sheets. This vacancy-mediated magnetism has renewed the interest on Kondo physics in graphene systems. The Kondo effect is singular in graphene due to its vanishing density of states at low energies, which puts graphene in the class of the socalled pseudogap systems. The pseudogap leads to a Kondo physics that is significantly different than that of the metallic case. There is a recent report on the observation of the Kondo effect in graphene in the literature [1]. However, this result has been contested in favor of a Curie-like paramagnetism persistent down to temperatures as low as 2K [2]. Inthis cloudy scenario, theory can offer valuable support to elucidate this puzzle. In this thesis we put forward a theoretical model to address the Kondo effect in graphene with vacancies. We show that disorder plays a central role for the Kondo physics in graphene being the mechanism responsible for the coupling between the local moment created by the vacancy and the conduction band electrons. Our study shows that graphene's nearest neighbors tight-binding Hamiltonian can, upon inclusion of the long-range disorder term, be mapped into a single impurity Anderson-like model. This Anderson Hamiltonian provides the necessary inputs to implement the Numerical Renormalization Group method (NRG), that allows a full characterization of the low-temperature behavior of the system physical properties. We perform NRG simulations and analyze the system's magnetic susceptibility. We find that disorder "spoils" the pseudogap character of graphene since our results are consistent with those of a "standard" metal. We also use the NRG method to study the distributions of Kondo temperatures P (TK). We find that the resulting P (TK) depends on the disorder strength and, in a more subtle manner, on the chemical potential. We show that disorder can lead to long logarithmic tails in P (TK), consistent with a quantum Griffiths phase, opening the possibility of observation of non-Fermi-liquid behavior in graphene. Finally, we argue that our study can also offer a conciliatory scenario to the contentious experimental results reported in the literature about the low-temperature behavior of local magnetic moments generated by vacancies in graphene.
id UFF-2_5487296e7b4d8ae4bdedf6ae54b78403
oai_identifier_str oai:app.uff.br:1/6166
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str 2120
spelling Kondo effect in disordered grapheneEfeito KondoPseudogapGrafenoVacânciaDesordemFase de GriffithsEfeito KondoPseudogapGrafenoVacânciaDesordemFase de GriffithsRecent experiments found evidences that vacancies give rise to local magnetic moments in graphene sheets. This vacancy-mediated magnetism has renewed the interest on Kondo physics in graphene systems. The Kondo effect is singular in graphene due to its vanishing density of states at low energies, which puts graphene in the class of the socalled pseudogap systems. The pseudogap leads to a Kondo physics that is significantly different than that of the metallic case. There is a recent report on the observation of the Kondo effect in graphene in the literature [1]. However, this result has been contested in favor of a Curie-like paramagnetism persistent down to temperatures as low as 2K [2]. Inthis cloudy scenario, theory can offer valuable support to elucidate this puzzle. In this thesis we put forward a theoretical model to address the Kondo effect in graphene with vacancies. We show that disorder plays a central role for the Kondo physics in graphene being the mechanism responsible for the coupling between the local moment created by the vacancy and the conduction band electrons. Our study shows that graphene's nearest neighbors tight-binding Hamiltonian can, upon inclusion of the long-range disorder term, be mapped into a single impurity Anderson-like model. This Anderson Hamiltonian provides the necessary inputs to implement the Numerical Renormalization Group method (NRG), that allows a full characterization of the low-temperature behavior of the system physical properties. We perform NRG simulations and analyze the system's magnetic susceptibility. We find that disorder "spoils" the pseudogap character of graphene since our results are consistent with those of a "standard" metal. We also use the NRG method to study the distributions of Kondo temperatures P (TK). We find that the resulting P (TK) depends on the disorder strength and, in a more subtle manner, on the chemical potential. We show that disorder can lead to long logarithmic tails in P (TK), consistent with a quantum Griffiths phase, opening the possibility of observation of non-Fermi-liquid behavior in graphene. Finally, we argue that our study can also offer a conciliatory scenario to the contentious experimental results reported in the literature about the low-temperature behavior of local magnetic moments generated by vacancies in graphene.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperioExperimentos recentes encontraram evidências que vacâncias dão origem a momentos magnéticos locais em folhas de grafeno. Este magnetismo mediado por vacâncias renovou o interesse na física de Kondo em grafeno. O efeito Kondo em grafeno é singular devido à sua densidade de estados ir a zero a baixas energias, colocando-o na classe dos chamados sistemas de pseudogap. O pseudogap leva a uma física de Kondo signi cativamente diferente da de sistemas metálicos. Na literatura, há relato recente de observação do efeito Kondo em grafeno [1]. No entanto, este resultado foi contestado em favor da observação de paramagnetismo do tipo lei de Curie persistente a temperaturas baixas até 2K [2]. Em meio a este cenário controverso, a teoria pode fornecer uma ajuda valiosa para elucidar este problema. Nesta tese, nós propomos um modelo teórico para tratar o efeito Kondo em grafeno com vacâncias. Nós mostramos que a desordem tem um papel central para a física de Kondo no grafeno, sendo responsável pelo acoplamento entre o momento localizado gerado pela vacância e os elétrons da banda de condução. Nosso estudo mostra que o Hamiltoniano de ligações fortes de primeiros vizinhos do grafeno pode, após inclusão do termo de desordem de longo alcance, ser mapeado num modelo do tipo Anderson de uma impureza. Este modelo de Anderson fornece as entradas necessárias para implementação do método do Grupo de Renormalização Numérico (NRG), que permite uma caracterização completa do comportamento a baixas temperaturas das propriedades físicas do sistema. Nós realizamos simulações via NRG e analisamos a susceptibilidade magnética do sistema. Deste estudo observamos que a desordem "arruína" o caráter de pseudogap do grafeno pois nossos resultados são consistentes com o esperado para metais "comuns". Também aplicamos o método do NRG para avaliar as distribuições de temperaturas de Kondo P(TK). Observamos que as distribuições P(TK) dependem do grau da desordem e, de uma maneira mais sutil, do potencial químico. Mostramos que a desordem pode levar a P(TK) com caudas logarítmicas longas, consistente com uma fase de Gri ths quântica. Isto abre a possibilidade da observação de comportamento do tipo não líquido de Fermi em grafeno. Finalmente, argumentamos que nosso estudo pode oferecer um cenário conciliatório para os resultados experimentais conflituosos na literatura acerca do comportamento a baixas temperaturas de momentos magnéticos localizados gerados por vacâncias em grafeno.NiteróiLewenkopf, CaioMiranda, Vladimir Gonçalves2018-04-09T21:24:44Z2018-04-09T21:24:44Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/6166Aluno de doutoradoopenAccesshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2020-07-27T17:11:50Zoai:app.uff.br:1/6166Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202020-07-27T17:11:50Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Kondo effect in disordered graphene
title Kondo effect in disordered graphene
spellingShingle Kondo effect in disordered graphene
Miranda, Vladimir Gonçalves
Efeito Kondo
Pseudogap
Grafeno
Vacância
Desordem
Fase de Griffiths
Efeito Kondo
Pseudogap
Grafeno
Vacância
Desordem
Fase de Griffiths
title_short Kondo effect in disordered graphene
title_full Kondo effect in disordered graphene
title_fullStr Kondo effect in disordered graphene
title_full_unstemmed Kondo effect in disordered graphene
title_sort Kondo effect in disordered graphene
author Miranda, Vladimir Gonçalves
author_facet Miranda, Vladimir Gonçalves
author_role author
dc.contributor.none.fl_str_mv Lewenkopf, Caio
dc.contributor.author.fl_str_mv Miranda, Vladimir Gonçalves
dc.subject.por.fl_str_mv Efeito Kondo
Pseudogap
Grafeno
Vacância
Desordem
Fase de Griffiths
Efeito Kondo
Pseudogap
Grafeno
Vacância
Desordem
Fase de Griffiths
topic Efeito Kondo
Pseudogap
Grafeno
Vacância
Desordem
Fase de Griffiths
Efeito Kondo
Pseudogap
Grafeno
Vacância
Desordem
Fase de Griffiths
description Recent experiments found evidences that vacancies give rise to local magnetic moments in graphene sheets. This vacancy-mediated magnetism has renewed the interest on Kondo physics in graphene systems. The Kondo effect is singular in graphene due to its vanishing density of states at low energies, which puts graphene in the class of the socalled pseudogap systems. The pseudogap leads to a Kondo physics that is significantly different than that of the metallic case. There is a recent report on the observation of the Kondo effect in graphene in the literature [1]. However, this result has been contested in favor of a Curie-like paramagnetism persistent down to temperatures as low as 2K [2]. Inthis cloudy scenario, theory can offer valuable support to elucidate this puzzle. In this thesis we put forward a theoretical model to address the Kondo effect in graphene with vacancies. We show that disorder plays a central role for the Kondo physics in graphene being the mechanism responsible for the coupling between the local moment created by the vacancy and the conduction band electrons. Our study shows that graphene's nearest neighbors tight-binding Hamiltonian can, upon inclusion of the long-range disorder term, be mapped into a single impurity Anderson-like model. This Anderson Hamiltonian provides the necessary inputs to implement the Numerical Renormalization Group method (NRG), that allows a full characterization of the low-temperature behavior of the system physical properties. We perform NRG simulations and analyze the system's magnetic susceptibility. We find that disorder "spoils" the pseudogap character of graphene since our results are consistent with those of a "standard" metal. We also use the NRG method to study the distributions of Kondo temperatures P (TK). We find that the resulting P (TK) depends on the disorder strength and, in a more subtle manner, on the chemical potential. We show that disorder can lead to long logarithmic tails in P (TK), consistent with a quantum Griffiths phase, opening the possibility of observation of non-Fermi-liquid behavior in graphene. Finally, we argue that our study can also offer a conciliatory scenario to the contentious experimental results reported in the literature about the low-temperature behavior of local magnetic moments generated by vacancies in graphene.
publishDate 2014
dc.date.none.fl_str_mv 2014
2018-04-09T21:24:44Z
2018-04-09T21:24:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://app.uff.br/riuff/handle/1/6166
Aluno de doutorado
url https://app.uff.br/riuff/handle/1/6166
identifier_str_mv Aluno de doutorado
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv openAccess
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv openAccess
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Niterói
publisher.none.fl_str_mv Niterói
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1797044662553280512