Efficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging

Detalhes bibliográficos
Autor(a) principal: Jose Olger Vargas Garay
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/46930
http://orcid.org/0000-0002-5431-6823
Resumo: The electromagnetic inverse scattering problem in microwave imaging aims to recover the dielectric properties, location, size, and shape of scatterers inside an inaccessible domain. This is an important field of electromagnetic wave applications, such as biomedical imaging, buried object detection, oil-gas exploration, and nondestructive evaluation. The imaging is performed by analyzing the scattered field measurements, which are usually cast into an optimization problem. In this context, an iterative inversion method is often required to minimize a cost function constructed by the mismatch of the measured scattered field and the computed one. In this thesis, different efficient algorithms based on the conjugate gradient method (CGM) to solve two- and three-dimensional inverse scattering problems are presented. The inversion CGM requires the solution of the forward scattering problem and the calculation of the gradient direction of the cost function at each iteration step. Depending on the gradient approximation, the CGM can be classified into two main approaches, linearized and nonlinearized methods. Each computation of the forward problem can be very time consuming. To avoid the computational burden, the forward solvers are efficiently implemented by using iterative methods to solve systems of simultaneous equations combined with FFT (fast Fourier transform) algorithms. The inversion methods proposed in this thesis are based on conjugate gradient approaches. Firstly, an efficient implementation of the nonlinearized CGM is proposed, which does not require calculating the inverse matrix. Such an approach reduces the computational cost and storage requirement of the reconstruction algorithm compared to the original one. Secondly, a subspace-based CGM (S-CGM) is also proposed, which is based on the linearized CGM and the concept of subspaces. Lastly, we propose a fast CGM to solve inverse scattering problems with a low degree of nonlinearity. Several numerical simulations have been carried out to validate the proposed inversion algorithms. In the 2D case, the methods are tested against both synthetic and experimental data. The reconstruction results show effectiveness in estimating the location, object shape, and permittivity values of the scatterers. In addition, numerical simulations using synthetic data show effectiveness for image reconstruction in three-dimensional problems.
id UFMG_c635318f927aac55722b84de73405b46
oai_identifier_str oai:repositorio.ufmg.br:1843/46930
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Ricardo Luiz da Silva Adrianohttp://lattes.cnpq.br/4249905570348130Renato Cardoso MesquitaFernando José da Silva MoreiraÚrsula do Carmo ResendeXisto Lucas Travassos Juniorhttp://lattes.cnpq.br/1521407125855815Jose Olger Vargas Garay2022-11-04T17:56:03Z2022-11-04T17:56:03Z2022-09-12http://hdl.handle.net/1843/46930http://orcid.org/0000-0002-5431-6823The electromagnetic inverse scattering problem in microwave imaging aims to recover the dielectric properties, location, size, and shape of scatterers inside an inaccessible domain. This is an important field of electromagnetic wave applications, such as biomedical imaging, buried object detection, oil-gas exploration, and nondestructive evaluation. The imaging is performed by analyzing the scattered field measurements, which are usually cast into an optimization problem. In this context, an iterative inversion method is often required to minimize a cost function constructed by the mismatch of the measured scattered field and the computed one. In this thesis, different efficient algorithms based on the conjugate gradient method (CGM) to solve two- and three-dimensional inverse scattering problems are presented. The inversion CGM requires the solution of the forward scattering problem and the calculation of the gradient direction of the cost function at each iteration step. Depending on the gradient approximation, the CGM can be classified into two main approaches, linearized and nonlinearized methods. Each computation of the forward problem can be very time consuming. To avoid the computational burden, the forward solvers are efficiently implemented by using iterative methods to solve systems of simultaneous equations combined with FFT (fast Fourier transform) algorithms. The inversion methods proposed in this thesis are based on conjugate gradient approaches. Firstly, an efficient implementation of the nonlinearized CGM is proposed, which does not require calculating the inverse matrix. Such an approach reduces the computational cost and storage requirement of the reconstruction algorithm compared to the original one. Secondly, a subspace-based CGM (S-CGM) is also proposed, which is based on the linearized CGM and the concept of subspaces. Lastly, we propose a fast CGM to solve inverse scattering problems with a low degree of nonlinearity. Several numerical simulations have been carried out to validate the proposed inversion algorithms. In the 2D case, the methods are tested against both synthetic and experimental data. The reconstruction results show effectiveness in estimating the location, object shape, and permittivity values of the scatterers. In addition, numerical simulations using synthetic data show effectiveness for image reconstruction in three-dimensional problems.O problema de espalhamento eletromagnético inverso para imageamento em microondas visa recuperar as propriedades dielétricas, localização, tamanho e forma de objetos espalhadores dentro de um domínio de interesse inacessível. Este é um importante campo das aplicações em eletromagnetismo como imagens biomédicas, detecção de objetos enterrados, exploração de petróleo e gás e avaliação não-destrutiva. O imageamento é realizado analisando as medições de campo espalhado. Nesse contexto, um método de inversão iterativo é frequentemente necessário para minimizar uma função objetivo construída pelo erro entre o campo espalhado medido e o campo espalhado calculado. Nesta tese são apresentados diferentes algoritmos eficientes baseados no método do gradiente conjugado (conjugate gradient method, CGM) para resolver problemas de espalhamento inverso em duas e três dimensões. Este método consiste na solução do problema de espalhamento direto e o cálculo da direção do gradiente da função objetivo dentro de cada iteração. Dependendo da aproximação do gradiente, o CGM pode ser classificado em duas abordagens principais: métodos linearizados e não linearizados. Cada cálculo do problema direto pode ter um alto custo computacional. Assim, para evitar o esforço computacional os solucionadores diretos são implementados eficientemente usando métodos iterativos para resolver sistemas lineares combinados com algoritmos FFT (fast Fourier transform). Os métodos de inversão propostos nesta tese são baseados em abordagens de gradiente conjugado. Inicialmente é proposta uma implementação eficiente do CGM não linearizado, o qual não requer o cálculo da matriz inversa. Essa abordagem reduz o custo computacional e os requisitos de armazenamento do algoritmo de reconstrução em comparação com a versão original. Em seguida, também é proposto um CGM baseado em subespaços (subspace-based CGM, S-CGM), que é baseado no CGM linearizado e no conceito de subespaços. Por fim, propomos um fast CGM para resolver problemas de espalhamento inverso com baixa não linearidade. Várias simulações numéricas foram realizadas para validar os algoritmos de inversão propostos. No caso 2D, os métodos foram testados com dados sintéticos e experimentais. Os resultados da reconstrução apresentam eficácia na estimativa da localização, forma do objeto e valores de permissividade dos espalhadores. Além disso, simulações numéricas usando dados sintéticos mostram eficácia para reconstrução de imagens em problemas tridimensionais.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Engenharia ElétricaUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICAEngenharia elétricaEquações integraisMicroondasOndas eletromagnéticas - EspalhamentoIntegral equationsMicrowave imagingConjugate gradient methodsInverse scattering problemsImage reconstructionEfficient inverse scattering algorithms based on conjugate gradient approaches for microwave imagingAlgoritmos eficientes de espalhamento inverso baseados em abordagens de gradiente conjugado para imageamento em micro-ondasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALEfficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging.pdfEfficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging.pdfapplication/pdf9857672https://repositorio.ufmg.br/bitstream/1843/46930/1/Efficient%20inverse%20scattering%20algorithms%20based%20on%20conjugate%20gradient%20approaches%20for%20microwave%20imaging.pdf90227631344164bf60bc9b3a51118700MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/46930/2/license.txtcda590c95a0b51b4d15f60c9642ca272MD521843/469302022-11-04 14:56:03.631oai:repositorio.ufmg.br:1843/46930TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2022-11-04T17:56:03Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Efficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging
dc.title.alternative.pt_BR.fl_str_mv Algoritmos eficientes de espalhamento inverso baseados em abordagens de gradiente conjugado para imageamento em micro-ondas
title Efficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging
spellingShingle Efficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging
Jose Olger Vargas Garay
Integral equations
Microwave imaging
Conjugate gradient methods
Inverse scattering problems
Image reconstruction
Engenharia elétrica
Equações integrais
Microondas
Ondas eletromagnéticas - Espalhamento
title_short Efficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging
title_full Efficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging
title_fullStr Efficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging
title_full_unstemmed Efficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging
title_sort Efficient inverse scattering algorithms based on conjugate gradient approaches for microwave imaging
author Jose Olger Vargas Garay
author_facet Jose Olger Vargas Garay
author_role author
dc.contributor.advisor1.fl_str_mv Ricardo Luiz da Silva Adriano
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4249905570348130
dc.contributor.referee1.fl_str_mv Renato Cardoso Mesquita
dc.contributor.referee2.fl_str_mv Fernando José da Silva Moreira
dc.contributor.referee3.fl_str_mv Úrsula do Carmo Resende
dc.contributor.referee4.fl_str_mv Xisto Lucas Travassos Junior
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1521407125855815
dc.contributor.author.fl_str_mv Jose Olger Vargas Garay
contributor_str_mv Ricardo Luiz da Silva Adriano
Renato Cardoso Mesquita
Fernando José da Silva Moreira
Úrsula do Carmo Resende
Xisto Lucas Travassos Junior
dc.subject.por.fl_str_mv Integral equations
Microwave imaging
Conjugate gradient methods
Inverse scattering problems
Image reconstruction
topic Integral equations
Microwave imaging
Conjugate gradient methods
Inverse scattering problems
Image reconstruction
Engenharia elétrica
Equações integrais
Microondas
Ondas eletromagnéticas - Espalhamento
dc.subject.other.pt_BR.fl_str_mv Engenharia elétrica
Equações integrais
Microondas
Ondas eletromagnéticas - Espalhamento
description The electromagnetic inverse scattering problem in microwave imaging aims to recover the dielectric properties, location, size, and shape of scatterers inside an inaccessible domain. This is an important field of electromagnetic wave applications, such as biomedical imaging, buried object detection, oil-gas exploration, and nondestructive evaluation. The imaging is performed by analyzing the scattered field measurements, which are usually cast into an optimization problem. In this context, an iterative inversion method is often required to minimize a cost function constructed by the mismatch of the measured scattered field and the computed one. In this thesis, different efficient algorithms based on the conjugate gradient method (CGM) to solve two- and three-dimensional inverse scattering problems are presented. The inversion CGM requires the solution of the forward scattering problem and the calculation of the gradient direction of the cost function at each iteration step. Depending on the gradient approximation, the CGM can be classified into two main approaches, linearized and nonlinearized methods. Each computation of the forward problem can be very time consuming. To avoid the computational burden, the forward solvers are efficiently implemented by using iterative methods to solve systems of simultaneous equations combined with FFT (fast Fourier transform) algorithms. The inversion methods proposed in this thesis are based on conjugate gradient approaches. Firstly, an efficient implementation of the nonlinearized CGM is proposed, which does not require calculating the inverse matrix. Such an approach reduces the computational cost and storage requirement of the reconstruction algorithm compared to the original one. Secondly, a subspace-based CGM (S-CGM) is also proposed, which is based on the linearized CGM and the concept of subspaces. Lastly, we propose a fast CGM to solve inverse scattering problems with a low degree of nonlinearity. Several numerical simulations have been carried out to validate the proposed inversion algorithms. In the 2D case, the methods are tested against both synthetic and experimental data. The reconstruction results show effectiveness in estimating the location, object shape, and permittivity values of the scatterers. In addition, numerical simulations using synthetic data show effectiveness for image reconstruction in three-dimensional problems.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-11-04T17:56:03Z
dc.date.available.fl_str_mv 2022-11-04T17:56:03Z
dc.date.issued.fl_str_mv 2022-09-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/46930
dc.identifier.orcid.pt_BR.fl_str_mv http://orcid.org/0000-0002-5431-6823
url http://hdl.handle.net/1843/46930
http://orcid.org/0000-0002-5431-6823
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/46930/1/Efficient%20inverse%20scattering%20algorithms%20based%20on%20conjugate%20gradient%20approaches%20for%20microwave%20imaging.pdf
https://repositorio.ufmg.br/bitstream/1843/46930/2/license.txt
bitstream.checksum.fl_str_mv 90227631344164bf60bc9b3a51118700
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1801676933438636032