Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise

Detalhes bibliográficos
Autor(a) principal: MOYA, Johan René González
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
Texto Completo: https://repositorio.ufpe.br/handle/123456789/17768
Resumo: No presente trabalho foi investigado o desempenho de nanotubos de TiO2 sensibilizados com quantum dots de CdS na geração de hidrogênio por meio da reação de dissociação da água por meio da fotocatálise e fotoeletrocatálise. Os nanotubos de TiO2 foram obtidos pelo método de anodização (30 V, 1 hora) de chapas de Ti, em etilenoglicol e água contendo íons fluoreto. As amostras anodizadas foram submetidas a tratamento térmico 400°C durante 3 horas. Posteriormente as amostras foram sensibilizadas com quantum dots de CdS via síntese hidrotérmica in situ usando o ácido 3-mercaptopropiônico como agente estabilizante. A eficiência fotocatalítica dos materiais na produção de hidrogênio foi investigada por meio da reação de dissociação da água utilizando como fonte de irradiação um simulador solar. A quantificação do hidrogênio gerado foi determinada por meio de cromatógrafia gasosa. Por outro lado, para estimar a eficiência de geração de hidrogênio via fotoeletrocatálise, as amostras foram avaliadas como fotoânodos e medidas da fotocorrente gerada pela irradiação em uma célula fotoeletroquímica (PEC) de três eletrodos foram realizadas. A sensibilização dos nanotubos de TiO2 com os quantum dots de CdS a partir da síntese hidrotérmica in situ, permitiu uma boa impregnação e distribuição uniforme dos quantum dots ao redor da superfície dos nanotubos, de acordo com as análises de EDS e XPS. O perfil de profundidade de XPS mostrou que a concentração de CdS permaneceu praticamente inalterada (homogênea) ao longo da matriz nanotubular. A presença de ânions sulfato evidenciou a oxidação do material preferentemente na superfície. Os nanotubos conferem uma proteção ao CdS frente à oxidação e protegem também os quantum dots quanto à fotocorrosão na solução de sacrifício S2-/SO32- utilizada. Este comportamento define uma boa estabilidade na fotocorrente gerada como mostrado em experimentos de longa duração (20 horas) sob irradiação. Os resultados experimentais mostraram três comportamentos diferentes para a geração de H2 quando o tempo de síntese dos QDs de CdS aumenta. Foram observados, efeitos similares, antagônicos e sinérgicos frente à atividade fotocatalítica em relação aos nanotubos de TiO2. O efeito antagônico parece estar relacionado com a presença de duas populações de tamanhos de QDs de CdS, onde a população com um band gap menor atua como uma armadilha para os elétrons fotogerados pela população com um band gap maior, diminuindo a atividade fotocatalítica do TiO2 na região ultravioleta. A transferência de elétrons a partir dos QDs de CdS para o TiO2 foi comprovada pelos resultados de UPS combinados com as medidas do band gap óptico. A maior absorção no visível após a sensibilização com o CdS combinada com a transferência de elétrons possibilita um incremento na taxa de geração de hidrogênio por meio da fotocatálise a partir de luz visível de quase zero para os nanotubos de TiO2 até cerca de 0,3 μmol cm-2 h-1 após sensibilização com os QDs de CdS. No caso da fotoeletrocatálise em uma PEC, a taxa de geração de H2 a partir de luz visível estimada pela fotocorrente gerada após a sensibilização (1,79 μmol cm-2 h-1) chega a ser até 12 vezes maior que para os nanotubos de TiO2 sem sensibilizar (0,15 μmol cm-2 h-1).
id UFPE_24fe35da051a18e723a2457e7a861924
oai_identifier_str oai:repositorio.ufpe.br:123456789/17768
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling MOYA, Johan René Gonzálezhttp://lattes.cnpq.br/1818189288091462http://lattes.cnpq.br/2869680994075940MACHADO, GiovannaPRINCIVAL, Jefferson Luiz2016-08-31T13:00:29Z2016-08-31T13:00:29Z2016-02-29https://repositorio.ufpe.br/handle/123456789/17768No presente trabalho foi investigado o desempenho de nanotubos de TiO2 sensibilizados com quantum dots de CdS na geração de hidrogênio por meio da reação de dissociação da água por meio da fotocatálise e fotoeletrocatálise. Os nanotubos de TiO2 foram obtidos pelo método de anodização (30 V, 1 hora) de chapas de Ti, em etilenoglicol e água contendo íons fluoreto. As amostras anodizadas foram submetidas a tratamento térmico 400°C durante 3 horas. Posteriormente as amostras foram sensibilizadas com quantum dots de CdS via síntese hidrotérmica in situ usando o ácido 3-mercaptopropiônico como agente estabilizante. A eficiência fotocatalítica dos materiais na produção de hidrogênio foi investigada por meio da reação de dissociação da água utilizando como fonte de irradiação um simulador solar. A quantificação do hidrogênio gerado foi determinada por meio de cromatógrafia gasosa. Por outro lado, para estimar a eficiência de geração de hidrogênio via fotoeletrocatálise, as amostras foram avaliadas como fotoânodos e medidas da fotocorrente gerada pela irradiação em uma célula fotoeletroquímica (PEC) de três eletrodos foram realizadas. A sensibilização dos nanotubos de TiO2 com os quantum dots de CdS a partir da síntese hidrotérmica in situ, permitiu uma boa impregnação e distribuição uniforme dos quantum dots ao redor da superfície dos nanotubos, de acordo com as análises de EDS e XPS. O perfil de profundidade de XPS mostrou que a concentração de CdS permaneceu praticamente inalterada (homogênea) ao longo da matriz nanotubular. A presença de ânions sulfato evidenciou a oxidação do material preferentemente na superfície. Os nanotubos conferem uma proteção ao CdS frente à oxidação e protegem também os quantum dots quanto à fotocorrosão na solução de sacrifício S2-/SO32- utilizada. Este comportamento define uma boa estabilidade na fotocorrente gerada como mostrado em experimentos de longa duração (20 horas) sob irradiação. Os resultados experimentais mostraram três comportamentos diferentes para a geração de H2 quando o tempo de síntese dos QDs de CdS aumenta. Foram observados, efeitos similares, antagônicos e sinérgicos frente à atividade fotocatalítica em relação aos nanotubos de TiO2. O efeito antagônico parece estar relacionado com a presença de duas populações de tamanhos de QDs de CdS, onde a população com um band gap menor atua como uma armadilha para os elétrons fotogerados pela população com um band gap maior, diminuindo a atividade fotocatalítica do TiO2 na região ultravioleta. A transferência de elétrons a partir dos QDs de CdS para o TiO2 foi comprovada pelos resultados de UPS combinados com as medidas do band gap óptico. A maior absorção no visível após a sensibilização com o CdS combinada com a transferência de elétrons possibilita um incremento na taxa de geração de hidrogênio por meio da fotocatálise a partir de luz visível de quase zero para os nanotubos de TiO2 até cerca de 0,3 μmol cm-2 h-1 após sensibilização com os QDs de CdS. No caso da fotoeletrocatálise em uma PEC, a taxa de geração de H2 a partir de luz visível estimada pela fotocorrente gerada após a sensibilização (1,79 μmol cm-2 h-1) chega a ser até 12 vezes maior que para os nanotubos de TiO2 sem sensibilizar (0,15 μmol cm-2 h-1).CNPqIn the present work, we investigated the performance of TiO2 nanotubes sensitized with CdS quantum dots on the photocatalytic and photoelectrocatalytic H2 production reaction. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogenous), while the concentration relative to the sulfate anion decreases by more than 80 % with respect to the initial value after ~200 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix also protected the CdS from photocorrosion in sacrificial solution leading to good stability properties proved by a long duration photocurrent measurements. The effect of the sizes of CdS quantum dots attached to TiO2 nanotubes on the hydrogen production via photocatalysis was investigated. The experimental results showed three different behaviors when the CdS size is increased in the sensitized samples, e.g., similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related with two populations of sizes of CdS, where the population with a shorter band gap acts as a trap for the electrons photogenerated by the population with a larger band gap. Electron transfer from CdS quantum dots to TiO2 semiconductor nanotubes was proven by the results of UPS combined with optical band gap measurements. This property facilitates an improvement of the visible-light photocatalytic hydrogen evolution rate from zero, for TiO2 nanotubes, to approximately 0.3 μmolcm-2h-1 for TiO2 nanotubes sensitized with CdS quantum dots. The hydrogen generation rate estimated from photocurrents measurements via photoelectrocatalysis in PEC systems was also investigated. The hydrogen generation rate after sensitization was improved from 0,15 μmol cm-2 h-1 to 1,79 μmol cm-2 h-1, near to 12 times better performance under visible-light irradiation.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em QuimicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFotocatáliseFotoeletrocatáliseGeração de HidrogênioNanotubos de TiO2Quantum DotsPhotocatalysisPhotoelectrocatalysisHydrogen ProductionTiO2 NanotubesQuantum DotsNanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatáliseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTese Doutorado Johan CD.pdf.jpgTese Doutorado Johan CD.pdf.jpgGenerated Thumbnailimage/jpeg1421https://repositorio.ufpe.br/bitstream/123456789/17768/5/Tese%20Doutorado%20Johan%20CD.pdf.jpg07309599627a751b83f75088f0c2f7c3MD55ORIGINALTese Doutorado Johan CD.pdfTese Doutorado Johan CD.pdfapplication/pdf3689018https://repositorio.ufpe.br/bitstream/123456789/17768/1/Tese%20Doutorado%20Johan%20CD.pdf956c4e0d76742d36ffe10e5bd9f4fa90MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17768/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17768/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTese Doutorado Johan CD.pdf.txtTese Doutorado Johan CD.pdf.txtExtracted texttext/plain232463https://repositorio.ufpe.br/bitstream/123456789/17768/4/Tese%20Doutorado%20Johan%20CD.pdf.txt3f27e5d960d7ff6c1aa00d8f872002eaMD54123456789/177682019-10-25 12:35:02.102oai:repositorio.ufpe.br:123456789/17768TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:35:02Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise
title Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise
spellingShingle Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise
MOYA, Johan René González
Fotocatálise
Fotoeletrocatálise
Geração de Hidrogênio
Nanotubos de TiO2
Quantum Dots
Photocatalysis
Photoelectrocatalysis
Hydrogen Production
TiO2 Nanotubes
Quantum Dots
title_short Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise
title_full Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise
title_fullStr Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise
title_full_unstemmed Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise
title_sort Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise
author MOYA, Johan René González
author_facet MOYA, Johan René González
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1818189288091462
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2869680994075940
dc.contributor.author.fl_str_mv MOYA, Johan René González
dc.contributor.advisor1.fl_str_mv MACHADO, Giovanna
dc.contributor.advisor-co1.fl_str_mv PRINCIVAL, Jefferson Luiz
contributor_str_mv MACHADO, Giovanna
PRINCIVAL, Jefferson Luiz
dc.subject.por.fl_str_mv Fotocatálise
Fotoeletrocatálise
Geração de Hidrogênio
Nanotubos de TiO2
Quantum Dots
Photocatalysis
Photoelectrocatalysis
Hydrogen Production
TiO2 Nanotubes
Quantum Dots
topic Fotocatálise
Fotoeletrocatálise
Geração de Hidrogênio
Nanotubos de TiO2
Quantum Dots
Photocatalysis
Photoelectrocatalysis
Hydrogen Production
TiO2 Nanotubes
Quantum Dots
description No presente trabalho foi investigado o desempenho de nanotubos de TiO2 sensibilizados com quantum dots de CdS na geração de hidrogênio por meio da reação de dissociação da água por meio da fotocatálise e fotoeletrocatálise. Os nanotubos de TiO2 foram obtidos pelo método de anodização (30 V, 1 hora) de chapas de Ti, em etilenoglicol e água contendo íons fluoreto. As amostras anodizadas foram submetidas a tratamento térmico 400°C durante 3 horas. Posteriormente as amostras foram sensibilizadas com quantum dots de CdS via síntese hidrotérmica in situ usando o ácido 3-mercaptopropiônico como agente estabilizante. A eficiência fotocatalítica dos materiais na produção de hidrogênio foi investigada por meio da reação de dissociação da água utilizando como fonte de irradiação um simulador solar. A quantificação do hidrogênio gerado foi determinada por meio de cromatógrafia gasosa. Por outro lado, para estimar a eficiência de geração de hidrogênio via fotoeletrocatálise, as amostras foram avaliadas como fotoânodos e medidas da fotocorrente gerada pela irradiação em uma célula fotoeletroquímica (PEC) de três eletrodos foram realizadas. A sensibilização dos nanotubos de TiO2 com os quantum dots de CdS a partir da síntese hidrotérmica in situ, permitiu uma boa impregnação e distribuição uniforme dos quantum dots ao redor da superfície dos nanotubos, de acordo com as análises de EDS e XPS. O perfil de profundidade de XPS mostrou que a concentração de CdS permaneceu praticamente inalterada (homogênea) ao longo da matriz nanotubular. A presença de ânions sulfato evidenciou a oxidação do material preferentemente na superfície. Os nanotubos conferem uma proteção ao CdS frente à oxidação e protegem também os quantum dots quanto à fotocorrosão na solução de sacrifício S2-/SO32- utilizada. Este comportamento define uma boa estabilidade na fotocorrente gerada como mostrado em experimentos de longa duração (20 horas) sob irradiação. Os resultados experimentais mostraram três comportamentos diferentes para a geração de H2 quando o tempo de síntese dos QDs de CdS aumenta. Foram observados, efeitos similares, antagônicos e sinérgicos frente à atividade fotocatalítica em relação aos nanotubos de TiO2. O efeito antagônico parece estar relacionado com a presença de duas populações de tamanhos de QDs de CdS, onde a população com um band gap menor atua como uma armadilha para os elétrons fotogerados pela população com um band gap maior, diminuindo a atividade fotocatalítica do TiO2 na região ultravioleta. A transferência de elétrons a partir dos QDs de CdS para o TiO2 foi comprovada pelos resultados de UPS combinados com as medidas do band gap óptico. A maior absorção no visível após a sensibilização com o CdS combinada com a transferência de elétrons possibilita um incremento na taxa de geração de hidrogênio por meio da fotocatálise a partir de luz visível de quase zero para os nanotubos de TiO2 até cerca de 0,3 μmol cm-2 h-1 após sensibilização com os QDs de CdS. No caso da fotoeletrocatálise em uma PEC, a taxa de geração de H2 a partir de luz visível estimada pela fotocorrente gerada após a sensibilização (1,79 μmol cm-2 h-1) chega a ser até 12 vezes maior que para os nanotubos de TiO2 sem sensibilizar (0,15 μmol cm-2 h-1).
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-08-31T13:00:29Z
dc.date.available.fl_str_mv 2016-08-31T13:00:29Z
dc.date.issued.fl_str_mv 2016-02-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/17768
url https://repositorio.ufpe.br/handle/123456789/17768
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Quimica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/17768/5/Tese%20Doutorado%20Johan%20CD.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/17768/1/Tese%20Doutorado%20Johan%20CD.pdf
https://repositorio.ufpe.br/bitstream/123456789/17768/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/17768/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/17768/4/Tese%20Doutorado%20Johan%20CD.pdf.txt
bitstream.checksum.fl_str_mv 07309599627a751b83f75088f0c2f7c3
956c4e0d76742d36ffe10e5bd9f4fa90
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
3f27e5d960d7ff6c1aa00d8f872002ea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1797780583831568384