Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks

Detalhes bibliográficos
Autor(a) principal: GUERRERO PEÑA, Fidel Alejandro
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
Texto Completo: https://repositorio.ufpe.br/handle/123456789/36676
Resumo: In recent years, deep convolutional neural networks has overcome several challenges in the Ąeld of Computer Vision and Image Processing. Particularly, pixel-level tasks such as image segmentation, restoration, generation, enhancement, and inpainting have shown signiĄcant improvements thanks to the advances of the technique. In general, training a neural network is similar to solving a complex optimization problem where the unknowns are the parameters of the model, and the goal is to transform vectors from the input domain to the output set. This optimization process can be seen as a directed search through an error surface where the optimal set of weights is the one that gives a minimal error over a data sample. Since reaching the global minimum is very difficult, the task is simpliĄed to Ąnd an acceptable solution for the task. However, because of the high dimensionality of the solution space, the non-convexity of the error surface, and the presence of many Ćat regions and saddle points in the surface, the process of training a neural network is generally addressed by carefully tuning the hyperparameters of the model and annotating a vast training dataset. The three core components of the cost function used for supervised training are the architecture, the data, and the loss function. Despite the emergence of many new architectures, Ąnding better networks to solve a task is difficult. The modeling of new loss functions is a more feasible approach to improve the optimization and, therefore, Ąnd better-performed models. This work proposes to use a given network, and concentrates on the designing of loss functions for pixel-level regression and pixel-level classiĄcation problems, namely, image segmentation, to improve results. The rationale behind proposed loss functions is that the incorporation of priors in the form of regularization terms helps to distinguish between similarly-performed models, like the ones found in Ćat regions. New pre-processing and post-processing techniques are also introduced in each case to assist in solving real-life problems. The applicability of pixel-level classiĄcation loss functions in instance segmentation task with full and weak supervision was studied using challenging biological image datasets with isolated and clustered cells for both 2D and 3D. A pixel-level regression loss function was applied to the multi-focus image fusion problem. Experimental results for instance segmentation and image restoration tasks suggest an improvement of the performance when compared to other competitive loss functions. 3D segmentation and multi-focus image fusion approaches showed low execution time.
id UFPE_5536f828d98aaade9912d54a9b2efb2a
oai_identifier_str oai:repositorio.ufpe.br:123456789/36676
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling GUERRERO PEÑA, Fidel Alejandrohttp://lattes.cnpq.br/5830491865913075http://lattes.cnpq.br/3084134533707587http://lattes.cnpq.br/5943634209341438REN, Tsang IngVASCONCELOS, Germano Crispim2020-02-28T16:48:16Z2020-02-28T16:48:16Z2019-11-27GUERRERO PEÑA, Fidel Alejandro. Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.https://repositorio.ufpe.br/handle/123456789/36676In recent years, deep convolutional neural networks has overcome several challenges in the Ąeld of Computer Vision and Image Processing. Particularly, pixel-level tasks such as image segmentation, restoration, generation, enhancement, and inpainting have shown signiĄcant improvements thanks to the advances of the technique. In general, training a neural network is similar to solving a complex optimization problem where the unknowns are the parameters of the model, and the goal is to transform vectors from the input domain to the output set. This optimization process can be seen as a directed search through an error surface where the optimal set of weights is the one that gives a minimal error over a data sample. Since reaching the global minimum is very difficult, the task is simpliĄed to Ąnd an acceptable solution for the task. However, because of the high dimensionality of the solution space, the non-convexity of the error surface, and the presence of many Ćat regions and saddle points in the surface, the process of training a neural network is generally addressed by carefully tuning the hyperparameters of the model and annotating a vast training dataset. The three core components of the cost function used for supervised training are the architecture, the data, and the loss function. Despite the emergence of many new architectures, Ąnding better networks to solve a task is difficult. The modeling of new loss functions is a more feasible approach to improve the optimization and, therefore, Ąnd better-performed models. This work proposes to use a given network, and concentrates on the designing of loss functions for pixel-level regression and pixel-level classiĄcation problems, namely, image segmentation, to improve results. The rationale behind proposed loss functions is that the incorporation of priors in the form of regularization terms helps to distinguish between similarly-performed models, like the ones found in Ćat regions. New pre-processing and post-processing techniques are also introduced in each case to assist in solving real-life problems. The applicability of pixel-level classiĄcation loss functions in instance segmentation task with full and weak supervision was studied using challenging biological image datasets with isolated and clustered cells for both 2D and 3D. A pixel-level regression loss function was applied to the multi-focus image fusion problem. Experimental results for instance segmentation and image restoration tasks suggest an improvement of the performance when compared to other competitive loss functions. 3D segmentation and multi-focus image fusion approaches showed low execution time.FACEPENos últimos anos, os métodos baseados em redes convolucionais profundas superaram vários desafios no campo de Visão Computacional e Processamento de Imagens. Particularmente, tarefas em nível de pixel, como segmentação, restauração, geração, inpainting, e recuperação de informação em imagens, mostraram melhorias significativas graças ao avanço das redes neurais profundas. No geral, o treinamento de uma rede neural é o mesmo que resolver um problema de otimização complexo, onde as incógnitas são os parâmetros do modelo, e o objetivo é transformar vetores do domínio de entrada para o conjunto de saída. Esse processo de otimização pode ser visto como uma busca direcionada em uma superfície de erro, em que o conjunto ideal de pesos é aquele que gera um erro mínimo em uma amostra de dados. Dado que chegar ao mínimo global é muito difícil, a tarefa é simplificada a encontrar uma solução aceitável para uma tarefa dada. No entanto, devido à alta dimensionalidade do espaço da solução, a não-convexidade da superfície de erro, e a presença de muitas planícies, o processo de treinamento de uma rede neural é geralmente tratado por meio do ajuste cuidadoso dos hiperparâmetros do modelo e criando anotações de um amplo conjunto de dados de treinamento. As três componentes principais da função de custo usada no treinamento supervisionado são a arquitetura, os dados, e a função de perda. Apesar do surgimento de muitas novas arquiteturas, encontrar modelos com desempenho aceitável é muito difícil. A modelagem de funções de perda é uma abordagem mais efetiva para melhorar o processo de otimização e, por consequência, achar modelos com melhor desempenho. Este trabalho propõe-se a usar uma rede dada e concentra-se na proposição de funções de perda para problemas de regressão e classificação em nível de pixel, também conhecida como segmentação de imagem, visando a melhorar o desempenho. A lógica por trás das funções de perda propostas é que a incorporação de priors em forma de regularização ajuda a diferenciar modelos com desempenho semelhante. Novas técnicas de pré-processamento e pós-processamento também são propostas em cada caso para ajudar na solução de problemas reais. A aplicabilidade das funções de perda de classificação em nível de pixel na tarefa de segmentação de instância com supervisão completa e fraca foi estudada usando conjuntos de dados desafiadores de imagem biológica com células isoladas e agrupadas para 2D e 3D. A função de perda de regressão em nível de pixel foi aplicada ao problema de fusão de imagem com múltiplos focos. Os resultados da experimentação em tarefas de segmentação de instâncias e restauração de imagens sugerem uma melhoria do desempenho quando comparado com funções de perda semelhantes. Nas propostas de segmentação 3D e fusão de imagens com múltiplos focos, foi observado um baixo tempo de execução.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência ComputacionalRedes Convolucionais ProfundasFunção de PerdaSegmentação de InstânciasLoss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTTESE Fidel Alejandro Guerrero Pena.pdf.txtTESE Fidel Alejandro Guerrero Pena.pdf.txtExtracted texttext/plain234259https://repositorio.ufpe.br/bitstream/123456789/36676/4/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf.txtf65205d22f22dd0e9c7e87b774fbb659MD54THUMBNAILTESE Fidel Alejandro Guerrero Pena.pdf.jpgTESE Fidel Alejandro Guerrero Pena.pdf.jpgGenerated Thumbnailimage/jpeg1201https://repositorio.ufpe.br/bitstream/123456789/36676/5/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf.jpg41308e4b370bf88e48aa0fbdb27a429eMD55ORIGINALTESE Fidel Alejandro Guerrero Pena.pdfTESE Fidel Alejandro Guerrero Pena.pdfapplication/pdf8544751https://repositorio.ufpe.br/bitstream/123456789/36676/1/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdfeef750cb5ad14301592ab07188cee9a3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/36676/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/36676/3/license.txtbd573a5ca8288eb7272482765f819534MD53123456789/366762020-02-29 02:15:54.849oai:repositorio.ufpe.br:123456789/36676TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-02-29T05:15:54Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks
title Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks
spellingShingle Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks
GUERRERO PEÑA, Fidel Alejandro
Inteligência Computacional
Redes Convolucionais Profundas
Função de Perda
Segmentação de Instâncias
title_short Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks
title_full Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks
title_fullStr Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks
title_full_unstemmed Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks
title_sort Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks
author GUERRERO PEÑA, Fidel Alejandro
author_facet GUERRERO PEÑA, Fidel Alejandro
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5830491865913075
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3084134533707587
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5943634209341438
dc.contributor.author.fl_str_mv GUERRERO PEÑA, Fidel Alejandro
dc.contributor.advisor1.fl_str_mv REN, Tsang Ing
dc.contributor.advisor-co1.fl_str_mv VASCONCELOS, Germano Crispim
contributor_str_mv REN, Tsang Ing
VASCONCELOS, Germano Crispim
dc.subject.por.fl_str_mv Inteligência Computacional
Redes Convolucionais Profundas
Função de Perda
Segmentação de Instâncias
topic Inteligência Computacional
Redes Convolucionais Profundas
Função de Perda
Segmentação de Instâncias
description In recent years, deep convolutional neural networks has overcome several challenges in the Ąeld of Computer Vision and Image Processing. Particularly, pixel-level tasks such as image segmentation, restoration, generation, enhancement, and inpainting have shown signiĄcant improvements thanks to the advances of the technique. In general, training a neural network is similar to solving a complex optimization problem where the unknowns are the parameters of the model, and the goal is to transform vectors from the input domain to the output set. This optimization process can be seen as a directed search through an error surface where the optimal set of weights is the one that gives a minimal error over a data sample. Since reaching the global minimum is very difficult, the task is simpliĄed to Ąnd an acceptable solution for the task. However, because of the high dimensionality of the solution space, the non-convexity of the error surface, and the presence of many Ćat regions and saddle points in the surface, the process of training a neural network is generally addressed by carefully tuning the hyperparameters of the model and annotating a vast training dataset. The three core components of the cost function used for supervised training are the architecture, the data, and the loss function. Despite the emergence of many new architectures, Ąnding better networks to solve a task is difficult. The modeling of new loss functions is a more feasible approach to improve the optimization and, therefore, Ąnd better-performed models. This work proposes to use a given network, and concentrates on the designing of loss functions for pixel-level regression and pixel-level classiĄcation problems, namely, image segmentation, to improve results. The rationale behind proposed loss functions is that the incorporation of priors in the form of regularization terms helps to distinguish between similarly-performed models, like the ones found in Ćat regions. New pre-processing and post-processing techniques are also introduced in each case to assist in solving real-life problems. The applicability of pixel-level classiĄcation loss functions in instance segmentation task with full and weak supervision was studied using challenging biological image datasets with isolated and clustered cells for both 2D and 3D. A pixel-level regression loss function was applied to the multi-focus image fusion problem. Experimental results for instance segmentation and image restoration tasks suggest an improvement of the performance when compared to other competitive loss functions. 3D segmentation and multi-focus image fusion approaches showed low execution time.
publishDate 2019
dc.date.issued.fl_str_mv 2019-11-27
dc.date.accessioned.fl_str_mv 2020-02-28T16:48:16Z
dc.date.available.fl_str_mv 2020-02-28T16:48:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GUERRERO PEÑA, Fidel Alejandro. Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/36676
identifier_str_mv GUERRERO PEÑA, Fidel Alejandro. Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.
url https://repositorio.ufpe.br/handle/123456789/36676
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/36676/4/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/36676/5/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/36676/1/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf
https://repositorio.ufpe.br/bitstream/123456789/36676/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/36676/3/license.txt
bitstream.checksum.fl_str_mv f65205d22f22dd0e9c7e87b774fbb659
41308e4b370bf88e48aa0fbdb27a429e
eef750cb5ad14301592ab07188cee9a3
e39d27027a6cc9cb039ad269a5db8e34
bd573a5ca8288eb7272482765f819534
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1793515781657460736