Ensembles dinâmicos para detecção de concept drift em séries temporais

Detalhes bibliográficos
Autor(a) principal: LEAL, Denisson Augusto Bastos
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
Texto Completo: https://repositorio.ufpe.br/handle/123456789/48548
Resumo: Séries temporais são medições realizadas em um intervalo fixo de tempo, que podem ser usadas em diversos tipos de problemas. Elas são estudadas por diversas áreas a fim de compreender as características de sua geração. A área mais específica de previsão de séries temporais busca encontrar padrões dos movimentos em situações que já ocorreram para prever a próxima observação da série. Porém, ao longo do tempo podem acontecer alguns eventos que mudam todo o contexto da série, o concept drift, e o conhecimento armazenado da série pode não refletir mais a distribuição da série após esse evento. Então, quando um modelo de aprendizado de máquina é treinado para realizar previsões e um concept drift acontece, esse modelo passa a ficar defasado e para atualizar o modelo, alguns pontos do novo conceito precisam ser capturados e armazenados, até serem suficientes para um novo treinamento. Durante esse período de coleta de dados os modelos aumentam o erro bruscamente, afetando o desempenho geral do sistema de previsão e dependendo da frequência em que o concept drift aconteça, pode inviabilizar o seu uso. O objetivo desse trabalho é propor um método para previsão de séries temporais na presença de concept drift, minimizando o impacto da redução do desempenho preditivo durante o processo de adaptação ao novo conceito. Para isso foram propostos três métodos que usam o conceito antigo para melhorar o desempenho nessa fase de adaptação. Os métodos usam Particle Swarm Optimization (PSO) para otimização do treinamento de partículas Extreme Learning Machine (ELM), que são usadas na previsão e como sensores para detecção concept drift. O primeiro método usa um ensemble com todas as partículas treinadas. O segundo faz uma combinação, usando o algoritmo guloso, das melhores partículas quando o concept drift é detectado até a sua adaptação. E o terceiro usa a melhor combinação das partículas desde o início e atualiza a combinação depois da detecção de um concept drift. Todos os métodos propostos fazem adaptação para o novo conceito depois de ter dados suficientes para o treinamento. Nos experimentos foram usadas sete séries, sendo elas quatro geradas sinteticamente com concept drift conhecidos e três séries reais de índices do mercado financeiro com concept drift desconhecidos. Os resultados obtidos foram comparados com métodos da literatura e dois métodos propostos conseguiram resultados melhores com significância estatística. Mostrando que, o período de adaptação do método ao novo conceito é relevante no erro geral da previsão e que o treinamento anterior pode ajudar a reduzir esse erro.
id UFPE_beb64b2cc7821c3fd869dbd8be2c3bb3
oai_identifier_str oai:repositorio.ufpe.br:123456789/48548
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling LEAL, Denisson Augusto Bastoshttp://lattes.cnpq.br/0064762347246548http://lattes.cnpq.br/5194381227316437http://lattes.cnpq.br/9440014280856629OLIVEIRA, Adriano Lorena Inacio deARAÚJO, Ricardo de Andrade2023-01-06T16:07:51Z2023-01-06T16:07:51Z2022-03-03LEAL, Denisson Augusto Bastos. Ensembles dinâmicos para detecção de concept drift em séries temporais. 2022. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/48548Séries temporais são medições realizadas em um intervalo fixo de tempo, que podem ser usadas em diversos tipos de problemas. Elas são estudadas por diversas áreas a fim de compreender as características de sua geração. A área mais específica de previsão de séries temporais busca encontrar padrões dos movimentos em situações que já ocorreram para prever a próxima observação da série. Porém, ao longo do tempo podem acontecer alguns eventos que mudam todo o contexto da série, o concept drift, e o conhecimento armazenado da série pode não refletir mais a distribuição da série após esse evento. Então, quando um modelo de aprendizado de máquina é treinado para realizar previsões e um concept drift acontece, esse modelo passa a ficar defasado e para atualizar o modelo, alguns pontos do novo conceito precisam ser capturados e armazenados, até serem suficientes para um novo treinamento. Durante esse período de coleta de dados os modelos aumentam o erro bruscamente, afetando o desempenho geral do sistema de previsão e dependendo da frequência em que o concept drift aconteça, pode inviabilizar o seu uso. O objetivo desse trabalho é propor um método para previsão de séries temporais na presença de concept drift, minimizando o impacto da redução do desempenho preditivo durante o processo de adaptação ao novo conceito. Para isso foram propostos três métodos que usam o conceito antigo para melhorar o desempenho nessa fase de adaptação. Os métodos usam Particle Swarm Optimization (PSO) para otimização do treinamento de partículas Extreme Learning Machine (ELM), que são usadas na previsão e como sensores para detecção concept drift. O primeiro método usa um ensemble com todas as partículas treinadas. O segundo faz uma combinação, usando o algoritmo guloso, das melhores partículas quando o concept drift é detectado até a sua adaptação. E o terceiro usa a melhor combinação das partículas desde o início e atualiza a combinação depois da detecção de um concept drift. Todos os métodos propostos fazem adaptação para o novo conceito depois de ter dados suficientes para o treinamento. Nos experimentos foram usadas sete séries, sendo elas quatro geradas sinteticamente com concept drift conhecidos e três séries reais de índices do mercado financeiro com concept drift desconhecidos. Os resultados obtidos foram comparados com métodos da literatura e dois métodos propostos conseguiram resultados melhores com significância estatística. Mostrando que, o período de adaptação do método ao novo conceito é relevante no erro geral da previsão e que o treinamento anterior pode ajudar a reduzir esse erro.CNPqTime series are measurements performed over a fixed time interval, which can be used in different types of problems. They are studied by many disciplines seeking to understand the characteristics of their generation. There is a more specific area of time series forecasting that seeks to find patterns of movement in situations that happened in the past to predict the next observation in the series. However, over time, events known as concept drift can occur that change the context of the series and the knowledge stored in the series is no longer the distribution of the series after this event. So, when a machine learning model is trained to perform predictions and concept drift occurs, this model becomes outdated and for the model update, some points of the new concept need to be captured and stored, until they are sufficient for a new training. During this period of data collection, the models errors increase exponentially, affecting the overall performance of the forecasting system and depending on the frequency in which the concept drift happens, which can make its use unfeasible. The objective of this work is to propose a time series forecasting method in the presence of concept deviation, minimizing its impact during the adaptation process to the new concept. For this, three methods were proposed that use the old concept to improve performance in this adaptation phase. The methods use Particle Swarm Optimization (PSO) to optimize the training of Extreme Learning Machine (ELM) models, which are used in prediction and as sensors for concept drift detection. The first method uses an ensemble with all models trained. The second uses a combination, using the greedy algorithm, of the best models when the concept drift is detected until its adaptation. And the third uses the best combination of models from the start and updates the combination after a concept drift is detected. All proposed methods adapt to the new concept after having enough data for training. In the experiments, seven series were used, four synthetically generated with known concept drift and three real series of financial market indices with unknown concept drift. The results obtained were compared with methods in the literature and two proposed methods achieved better results with statistical significance. Showing that the period of adaptation of the method to the new concept is relevant in the general error of the forecast and that previous training can help to reduce this error.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalSéries temporaisEnsembles dinâmicos para detecção de concept drift em séries temporaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/48548/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALDISSERTAÇÃO Denisson Augusto Bastos Leal.pdfDISSERTAÇÃO Denisson Augusto Bastos Leal.pdfapplication/pdf1465035https://repositorio.ufpe.br/bitstream/123456789/48548/1/DISSERTA%c3%87%c3%83O%20Denisson%20Augusto%20Bastos%20Leal.pdfe87b606f7d0d8da6cadd4c892a9e9d56MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/48548/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Denisson Augusto Bastos Leal.pdf.txtDISSERTAÇÃO Denisson Augusto Bastos Leal.pdf.txtExtracted texttext/plain114193https://repositorio.ufpe.br/bitstream/123456789/48548/4/DISSERTA%c3%87%c3%83O%20Denisson%20Augusto%20Bastos%20Leal.pdf.txt3f5d9d137e49d211cd76730979c3353dMD54THUMBNAILDISSERTAÇÃO Denisson Augusto Bastos Leal.pdf.jpgDISSERTAÇÃO Denisson Augusto Bastos Leal.pdf.jpgGenerated Thumbnailimage/jpeg1230https://repositorio.ufpe.br/bitstream/123456789/48548/5/DISSERTA%c3%87%c3%83O%20Denisson%20Augusto%20Bastos%20Leal.pdf.jpg4812c05dac4caa7a97bcd989a3949aecMD55123456789/485482023-01-07 02:19:44.649oai:repositorio.ufpe.br:123456789/48548VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-01-07T05:19:44Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Ensembles dinâmicos para detecção de concept drift em séries temporais
title Ensembles dinâmicos para detecção de concept drift em séries temporais
spellingShingle Ensembles dinâmicos para detecção de concept drift em séries temporais
LEAL, Denisson Augusto Bastos
Inteligência computacional
Séries temporais
title_short Ensembles dinâmicos para detecção de concept drift em séries temporais
title_full Ensembles dinâmicos para detecção de concept drift em séries temporais
title_fullStr Ensembles dinâmicos para detecção de concept drift em séries temporais
title_full_unstemmed Ensembles dinâmicos para detecção de concept drift em séries temporais
title_sort Ensembles dinâmicos para detecção de concept drift em séries temporais
author LEAL, Denisson Augusto Bastos
author_facet LEAL, Denisson Augusto Bastos
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0064762347246548
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5194381227316437
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9440014280856629
dc.contributor.author.fl_str_mv LEAL, Denisson Augusto Bastos
dc.contributor.advisor1.fl_str_mv OLIVEIRA, Adriano Lorena Inacio de
dc.contributor.advisor-co1.fl_str_mv ARAÚJO, Ricardo de Andrade
contributor_str_mv OLIVEIRA, Adriano Lorena Inacio de
ARAÚJO, Ricardo de Andrade
dc.subject.por.fl_str_mv Inteligência computacional
Séries temporais
topic Inteligência computacional
Séries temporais
description Séries temporais são medições realizadas em um intervalo fixo de tempo, que podem ser usadas em diversos tipos de problemas. Elas são estudadas por diversas áreas a fim de compreender as características de sua geração. A área mais específica de previsão de séries temporais busca encontrar padrões dos movimentos em situações que já ocorreram para prever a próxima observação da série. Porém, ao longo do tempo podem acontecer alguns eventos que mudam todo o contexto da série, o concept drift, e o conhecimento armazenado da série pode não refletir mais a distribuição da série após esse evento. Então, quando um modelo de aprendizado de máquina é treinado para realizar previsões e um concept drift acontece, esse modelo passa a ficar defasado e para atualizar o modelo, alguns pontos do novo conceito precisam ser capturados e armazenados, até serem suficientes para um novo treinamento. Durante esse período de coleta de dados os modelos aumentam o erro bruscamente, afetando o desempenho geral do sistema de previsão e dependendo da frequência em que o concept drift aconteça, pode inviabilizar o seu uso. O objetivo desse trabalho é propor um método para previsão de séries temporais na presença de concept drift, minimizando o impacto da redução do desempenho preditivo durante o processo de adaptação ao novo conceito. Para isso foram propostos três métodos que usam o conceito antigo para melhorar o desempenho nessa fase de adaptação. Os métodos usam Particle Swarm Optimization (PSO) para otimização do treinamento de partículas Extreme Learning Machine (ELM), que são usadas na previsão e como sensores para detecção concept drift. O primeiro método usa um ensemble com todas as partículas treinadas. O segundo faz uma combinação, usando o algoritmo guloso, das melhores partículas quando o concept drift é detectado até a sua adaptação. E o terceiro usa a melhor combinação das partículas desde o início e atualiza a combinação depois da detecção de um concept drift. Todos os métodos propostos fazem adaptação para o novo conceito depois de ter dados suficientes para o treinamento. Nos experimentos foram usadas sete séries, sendo elas quatro geradas sinteticamente com concept drift conhecidos e três séries reais de índices do mercado financeiro com concept drift desconhecidos. Os resultados obtidos foram comparados com métodos da literatura e dois métodos propostos conseguiram resultados melhores com significância estatística. Mostrando que, o período de adaptação do método ao novo conceito é relevante no erro geral da previsão e que o treinamento anterior pode ajudar a reduzir esse erro.
publishDate 2022
dc.date.issued.fl_str_mv 2022-03-03
dc.date.accessioned.fl_str_mv 2023-01-06T16:07:51Z
dc.date.available.fl_str_mv 2023-01-06T16:07:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LEAL, Denisson Augusto Bastos. Ensembles dinâmicos para detecção de concept drift em séries temporais. 2022. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/48548
identifier_str_mv LEAL, Denisson Augusto Bastos. Ensembles dinâmicos para detecção de concept drift em séries temporais. 2022. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2022.
url https://repositorio.ufpe.br/handle/123456789/48548
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/48548/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/48548/1/DISSERTA%c3%87%c3%83O%20Denisson%20Augusto%20Bastos%20Leal.pdf
https://repositorio.ufpe.br/bitstream/123456789/48548/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/48548/4/DISSERTA%c3%87%c3%83O%20Denisson%20Augusto%20Bastos%20Leal.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/48548/5/DISSERTA%c3%87%c3%83O%20Denisson%20Augusto%20Bastos%20Leal.pdf.jpg
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
e87b606f7d0d8da6cadd4c892a9e9d56
5e89a1613ddc8510c6576f4b23a78973
3f5d9d137e49d211cd76730979c3353d
4812c05dac4caa7a97bcd989a3949aec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1797780370012241920