Control of redox homeostasis in tick blood feeding

Detalhes bibliográficos
Autor(a) principal: Sabadin, Gabriela Alves
Data de Publicação: 2019
Outros Autores: Xavier, Marina Amaral, Vaz Junior, Itabajara da Silva
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/198957
Resumo: Introduction: Ticks are hematophagous ectoparasites that cause significate economical losses. Acaricide application is the main method to tick control. However, it causes environmental contamination and selects resistant ticks. The immunological control represents a suitable method to replace or complement acaricide application. During its life cycle, female ticks ingest large amounts of blood, which contains toxic components able to damage biomolecules. Understanding which molecular mechanisms and proteins are involved in avoid damages caused by blood intake in ticks and other hematophagous arthropods could help to found potential candidate antigens to compose an anti-tick vaccine. Review: Hemoglobin comprises almost 20% of mammalian blood proteins, its hydrolysis during tick digestion increases total free heme that can potentially generate reactive oxygen species (ROS), which easily oxidize lipids, proteins and DNA, modifying they structure and function. Lipids are more susceptible to high ROS levels. It can lead to membrane instability and cell death. Protein modifications caused by ROS can promote the protein loss of function and cell disturbance, however, it can also work as post-translational modifications, acting in cell signaling processes. DNA presents more efficient protective mechanisms against ROS, but damages can lead to double helix rupture. Oxidative stress is defined as a disturbance in the balance between the production and elimination of ROS, in favor of ROS production, leading to a disruption in redox homeostasis and/or molecular damage. Despite the well-recognized heme oxidative power and its already demonstrated cytotoxicity, ticks are able to feed on blood, controlling the redox homeostasis without causing oxidative stress. This occurs because ticks developed physiological adaptations to transport, store, metabolize and secrete toxic components from the diet. The strategies, such as heme compartmentalization in specialized organelles, and heme and iron carrying proteins are shared with most of other hematophagous. Interesting, heme degradation, a mechanism commonly described in hematophagous arthropods, showed to be absent in ticks. Moreover, there is a lack of key enzymes from the heme degradation pathway in tick genomes. As expected, antioxidant enzymes are often involved in homeostasis redox control. They act in a convenient way, eliminating physiological and non-physiological produced ROS. Despite their essential role in non-hematophagous organisms, antioxidant enzymes were associated with blood ingestion during arthropod hematophagous process, demonstrating their role in avoiding oxidative stress caused by blood intake. Catalase showed to be essential to heme detoxification in Rhipicephalus microplus tick, and diverse antioxidant enzymes are up-regulated after blood intake in a variety of hematophagous parasites. If in one hand ROS is responsible to cell damage and oxidative stress, on the other hand, several works revealed the fundamental role of ROS in cell signaling and function, demonstrating the sophisticated regulation that is necessary to redox homeostasis control. Conclusions: In the course of arthropods evolution, blood-feeding life style represent a special strategy to acquire energy and biosynthetic precursors. Together with this advantage, hematophagous organisms needed to develop molecular mechanisms to control toxic components ingested with blood. In this context, several works reviewed here identified the role of proteins and enzymes in the control of free heme released during hematophagy and in redox homeostasis, in order to avoid oxidative stress caused by blood intake. This knowledge represents an important contribution in the search for new candidate targets to develop efficient tick control methods.
id UFRGS-2_ef76be1063d78284e853811a3db44f37
oai_identifier_str oai:www.lume.ufrgs.br:10183/198957
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Sabadin, Gabriela AlvesXavier, Marina AmaralVaz Junior, Itabajara da Silva2019-09-07T02:33:35Z20191678-0345http://hdl.handle.net/10183/198957001099609Introduction: Ticks are hematophagous ectoparasites that cause significate economical losses. Acaricide application is the main method to tick control. However, it causes environmental contamination and selects resistant ticks. The immunological control represents a suitable method to replace or complement acaricide application. During its life cycle, female ticks ingest large amounts of blood, which contains toxic components able to damage biomolecules. Understanding which molecular mechanisms and proteins are involved in avoid damages caused by blood intake in ticks and other hematophagous arthropods could help to found potential candidate antigens to compose an anti-tick vaccine. Review: Hemoglobin comprises almost 20% of mammalian blood proteins, its hydrolysis during tick digestion increases total free heme that can potentially generate reactive oxygen species (ROS), which easily oxidize lipids, proteins and DNA, modifying they structure and function. Lipids are more susceptible to high ROS levels. It can lead to membrane instability and cell death. Protein modifications caused by ROS can promote the protein loss of function and cell disturbance, however, it can also work as post-translational modifications, acting in cell signaling processes. DNA presents more efficient protective mechanisms against ROS, but damages can lead to double helix rupture. Oxidative stress is defined as a disturbance in the balance between the production and elimination of ROS, in favor of ROS production, leading to a disruption in redox homeostasis and/or molecular damage. Despite the well-recognized heme oxidative power and its already demonstrated cytotoxicity, ticks are able to feed on blood, controlling the redox homeostasis without causing oxidative stress. This occurs because ticks developed physiological adaptations to transport, store, metabolize and secrete toxic components from the diet. The strategies, such as heme compartmentalization in specialized organelles, and heme and iron carrying proteins are shared with most of other hematophagous. Interesting, heme degradation, a mechanism commonly described in hematophagous arthropods, showed to be absent in ticks. Moreover, there is a lack of key enzymes from the heme degradation pathway in tick genomes. As expected, antioxidant enzymes are often involved in homeostasis redox control. They act in a convenient way, eliminating physiological and non-physiological produced ROS. Despite their essential role in non-hematophagous organisms, antioxidant enzymes were associated with blood ingestion during arthropod hematophagous process, demonstrating their role in avoiding oxidative stress caused by blood intake. Catalase showed to be essential to heme detoxification in Rhipicephalus microplus tick, and diverse antioxidant enzymes are up-regulated after blood intake in a variety of hematophagous parasites. If in one hand ROS is responsible to cell damage and oxidative stress, on the other hand, several works revealed the fundamental role of ROS in cell signaling and function, demonstrating the sophisticated regulation that is necessary to redox homeostasis control. Conclusions: In the course of arthropods evolution, blood-feeding life style represent a special strategy to acquire energy and biosynthetic precursors. Together with this advantage, hematophagous organisms needed to develop molecular mechanisms to control toxic components ingested with blood. In this context, several works reviewed here identified the role of proteins and enzymes in the control of free heme released during hematophagy and in redox homeostasis, in order to avoid oxidative stress caused by blood intake. This knowledge represents an important contribution in the search for new candidate targets to develop efficient tick control methods.application/pdfengActa scientiae veterinariae. Porto Alegre, RS. Vol. 47 (2019), Pub. 1678, 11 p.Estresse oxidativoHomeostaseCarrapatoHematófagosTickRedox homeostasisOxidative stressHematophagyReactive oxygen speciesControl of redox homeostasis in tick blood feedinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001099609.pdf.txt001099609.pdf.txtExtracted Texttext/plain49808http://www.lume.ufrgs.br/bitstream/10183/198957/2/001099609.pdf.txt330476939d2d6962abe7d20dfdb3dea7MD52ORIGINAL001099609.pdfTexto completo (inglês)application/pdf207075http://www.lume.ufrgs.br/bitstream/10183/198957/1/001099609.pdf82d7ec3aba8021d15cec5f2130f89c2cMD5110183/1989572019-09-08 02:31:13.936134oai:www.lume.ufrgs.br:10183/198957Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2019-09-08T05:31:13Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Control of redox homeostasis in tick blood feeding
title Control of redox homeostasis in tick blood feeding
spellingShingle Control of redox homeostasis in tick blood feeding
Sabadin, Gabriela Alves
Estresse oxidativo
Homeostase
Carrapato
Hematófagos
Tick
Redox homeostasis
Oxidative stress
Hematophagy
Reactive oxygen species
title_short Control of redox homeostasis in tick blood feeding
title_full Control of redox homeostasis in tick blood feeding
title_fullStr Control of redox homeostasis in tick blood feeding
title_full_unstemmed Control of redox homeostasis in tick blood feeding
title_sort Control of redox homeostasis in tick blood feeding
author Sabadin, Gabriela Alves
author_facet Sabadin, Gabriela Alves
Xavier, Marina Amaral
Vaz Junior, Itabajara da Silva
author_role author
author2 Xavier, Marina Amaral
Vaz Junior, Itabajara da Silva
author2_role author
author
dc.contributor.author.fl_str_mv Sabadin, Gabriela Alves
Xavier, Marina Amaral
Vaz Junior, Itabajara da Silva
dc.subject.por.fl_str_mv Estresse oxidativo
Homeostase
Carrapato
Hematófagos
topic Estresse oxidativo
Homeostase
Carrapato
Hematófagos
Tick
Redox homeostasis
Oxidative stress
Hematophagy
Reactive oxygen species
dc.subject.eng.fl_str_mv Tick
Redox homeostasis
Oxidative stress
Hematophagy
Reactive oxygen species
description Introduction: Ticks are hematophagous ectoparasites that cause significate economical losses. Acaricide application is the main method to tick control. However, it causes environmental contamination and selects resistant ticks. The immunological control represents a suitable method to replace or complement acaricide application. During its life cycle, female ticks ingest large amounts of blood, which contains toxic components able to damage biomolecules. Understanding which molecular mechanisms and proteins are involved in avoid damages caused by blood intake in ticks and other hematophagous arthropods could help to found potential candidate antigens to compose an anti-tick vaccine. Review: Hemoglobin comprises almost 20% of mammalian blood proteins, its hydrolysis during tick digestion increases total free heme that can potentially generate reactive oxygen species (ROS), which easily oxidize lipids, proteins and DNA, modifying they structure and function. Lipids are more susceptible to high ROS levels. It can lead to membrane instability and cell death. Protein modifications caused by ROS can promote the protein loss of function and cell disturbance, however, it can also work as post-translational modifications, acting in cell signaling processes. DNA presents more efficient protective mechanisms against ROS, but damages can lead to double helix rupture. Oxidative stress is defined as a disturbance in the balance between the production and elimination of ROS, in favor of ROS production, leading to a disruption in redox homeostasis and/or molecular damage. Despite the well-recognized heme oxidative power and its already demonstrated cytotoxicity, ticks are able to feed on blood, controlling the redox homeostasis without causing oxidative stress. This occurs because ticks developed physiological adaptations to transport, store, metabolize and secrete toxic components from the diet. The strategies, such as heme compartmentalization in specialized organelles, and heme and iron carrying proteins are shared with most of other hematophagous. Interesting, heme degradation, a mechanism commonly described in hematophagous arthropods, showed to be absent in ticks. Moreover, there is a lack of key enzymes from the heme degradation pathway in tick genomes. As expected, antioxidant enzymes are often involved in homeostasis redox control. They act in a convenient way, eliminating physiological and non-physiological produced ROS. Despite their essential role in non-hematophagous organisms, antioxidant enzymes were associated with blood ingestion during arthropod hematophagous process, demonstrating their role in avoiding oxidative stress caused by blood intake. Catalase showed to be essential to heme detoxification in Rhipicephalus microplus tick, and diverse antioxidant enzymes are up-regulated after blood intake in a variety of hematophagous parasites. If in one hand ROS is responsible to cell damage and oxidative stress, on the other hand, several works revealed the fundamental role of ROS in cell signaling and function, demonstrating the sophisticated regulation that is necessary to redox homeostasis control. Conclusions: In the course of arthropods evolution, blood-feeding life style represent a special strategy to acquire energy and biosynthetic precursors. Together with this advantage, hematophagous organisms needed to develop molecular mechanisms to control toxic components ingested with blood. In this context, several works reviewed here identified the role of proteins and enzymes in the control of free heme released during hematophagy and in redox homeostasis, in order to avoid oxidative stress caused by blood intake. This knowledge represents an important contribution in the search for new candidate targets to develop efficient tick control methods.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-09-07T02:33:35Z
dc.date.issued.fl_str_mv 2019
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/198957
dc.identifier.issn.pt_BR.fl_str_mv 1678-0345
dc.identifier.nrb.pt_BR.fl_str_mv 001099609
identifier_str_mv 1678-0345
001099609
url http://hdl.handle.net/10183/198957
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Acta scientiae veterinariae. Porto Alegre, RS. Vol. 47 (2019), Pub. 1678, 11 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/198957/2/001099609.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/198957/1/001099609.pdf
bitstream.checksum.fl_str_mv 330476939d2d6962abe7d20dfdb3dea7
82d7ec3aba8021d15cec5f2130f89c2c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801224974199947264