NiO–CGO in situ nanocomposite attainment: one step synthesis

Detalhes bibliográficos
Autor(a) principal: Cela, Beatriz
Data de Publicação: 2011
Outros Autores: Macedo, Daniel Araújo de, Souza, Graziele Lopes de, Martinelli, Antonio Eduardo, Nascimento, Rubens Maribondo do, Paskocimas, Carlos Alberto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/32019
Resumo: The CeO2-based electrolyte low temperature SOFCs require special electrodes with a higher performance and compatibility. The performance of the CeO2-based composite anodes depends on microstructural features such as particle size, tripe phase boundaries (TPB), surface area, and percolation. Some of the primary parameter can be manipulated during the materials synthesis. In this work the compound NiO–Ce0.9Gd0.1O1.95 (NiO–CGO), used as anode in SOFC, was synthesized by two different processes. Both of them are based on the polymeric precursormethod. Characterized by simultaneous thermogravimetry-differential thermal analysis, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and dilatometry. The refinement of the XRD data indicated that the composite sample synthesized by the process called “one step synthesis” produced smaller crystallite size in comparison to the sample attained by the two steps process. Simple preliminary performance tests were done with single cells in which such I–V curves indicated that the cell with one step anode had better performance. “One step synthesis” product, in situ nanocomposite, presented similar fine grained particle sizes for both phases Ni and CGO, which would be beneficial to the electrochemical activity, also indicated by first performance tests
id UFRN_fa8fd41386f2f50eaea65270504e020b
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/32019
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Cela, BeatrizMacedo, Daniel Araújo deSouza, Graziele Lopes deMartinelli, Antonio EduardoNascimento, Rubens Maribondo doPaskocimas, Carlos Alberto2021-03-29T18:08:45Z2021-03-29T18:08:45Z2011-03-01CELA, Beatriz ; MACEDO, Daniel A. de ; SOUZA, Graziele L. de ; MARTINELLI, A. E. ; NASCIMENTO, Rubens M. do ; PASKOCIMAS, C. A. . NiO-CGO in-situ nanocomposite attainment: one step synthesis. Journal of Power Sources (Print), v. 196, p. 2539-2544, 2010. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378775310019324?via%3Dihub Acesso em: 16 nov. 2020. https://doi.org/10.1016/j.jpowsour.2010.11.026.0378-7753https://repositorio.ufrn.br/handle/123456789/3201910.1016/j.jpowsour.2010.11.026ElsevierAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessGadolinium-doped ceriaElectrolyteAnodePolymeric precursor methodSOFCIn-situ nanocompositeNiO–CGO in situ nanocomposite attainment: one step synthesisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe CeO2-based electrolyte low temperature SOFCs require special electrodes with a higher performance and compatibility. The performance of the CeO2-based composite anodes depends on microstructural features such as particle size, tripe phase boundaries (TPB), surface area, and percolation. Some of the primary parameter can be manipulated during the materials synthesis. In this work the compound NiO–Ce0.9Gd0.1O1.95 (NiO–CGO), used as anode in SOFC, was synthesized by two different processes. Both of them are based on the polymeric precursormethod. Characterized by simultaneous thermogravimetry-differential thermal analysis, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and dilatometry. The refinement of the XRD data indicated that the composite sample synthesized by the process called “one step synthesis” produced smaller crystallite size in comparison to the sample attained by the two steps process. Simple preliminary performance tests were done with single cells in which such I–V curves indicated that the cell with one step anode had better performance. “One step synthesis” product, in situ nanocomposite, presented similar fine grained particle sizes for both phases Ni and CGO, which would be beneficial to the electrochemical activity, also indicated by first performance testsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALNiO–CGOInSitu_MARTINELLI_2011.pdfNiO–CGOInSitu_MARTINELLI_2011.pdfapplication/pdf871449https://repositorio.ufrn.br/bitstream/123456789/32019/1/NiO%e2%80%93CGOInSitu_MARTINELLI_2011.pdfa738658331cadbe7cf26bcb81c3fe8b0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/32019/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/32019/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTNiO–CGOInSitu_MARTINELLI_2011.pdf.txtNiO–CGOInSitu_MARTINELLI_2011.pdf.txtExtracted texttext/plain26812https://repositorio.ufrn.br/bitstream/123456789/32019/4/NiO%e2%80%93CGOInSitu_MARTINELLI_2011.pdf.txt36a812fb4a1687508f3df72c65ef51a2MD54THUMBNAILNiO–CGOInSitu_MARTINELLI_2011.pdf.jpgNiO–CGOInSitu_MARTINELLI_2011.pdf.jpgGenerated Thumbnailimage/jpeg1730https://repositorio.ufrn.br/bitstream/123456789/32019/5/NiO%e2%80%93CGOInSitu_MARTINELLI_2011.pdf.jpgb8be7ef7a085ac84b65797127c71ea62MD55123456789/320192021-04-12 11:04:34.64oai:https://repositorio.ufrn.br:123456789/32019Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-04-12T14:04:34Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv NiO–CGO in situ nanocomposite attainment: one step synthesis
title NiO–CGO in situ nanocomposite attainment: one step synthesis
spellingShingle NiO–CGO in situ nanocomposite attainment: one step synthesis
Cela, Beatriz
Gadolinium-doped ceria
Electrolyte
Anode
Polymeric precursor method
SOFC
In-situ nanocomposite
title_short NiO–CGO in situ nanocomposite attainment: one step synthesis
title_full NiO–CGO in situ nanocomposite attainment: one step synthesis
title_fullStr NiO–CGO in situ nanocomposite attainment: one step synthesis
title_full_unstemmed NiO–CGO in situ nanocomposite attainment: one step synthesis
title_sort NiO–CGO in situ nanocomposite attainment: one step synthesis
author Cela, Beatriz
author_facet Cela, Beatriz
Macedo, Daniel Araújo de
Souza, Graziele Lopes de
Martinelli, Antonio Eduardo
Nascimento, Rubens Maribondo do
Paskocimas, Carlos Alberto
author_role author
author2 Macedo, Daniel Araújo de
Souza, Graziele Lopes de
Martinelli, Antonio Eduardo
Nascimento, Rubens Maribondo do
Paskocimas, Carlos Alberto
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Cela, Beatriz
Macedo, Daniel Araújo de
Souza, Graziele Lopes de
Martinelli, Antonio Eduardo
Nascimento, Rubens Maribondo do
Paskocimas, Carlos Alberto
dc.subject.por.fl_str_mv Gadolinium-doped ceria
Electrolyte
Anode
Polymeric precursor method
SOFC
In-situ nanocomposite
topic Gadolinium-doped ceria
Electrolyte
Anode
Polymeric precursor method
SOFC
In-situ nanocomposite
description The CeO2-based electrolyte low temperature SOFCs require special electrodes with a higher performance and compatibility. The performance of the CeO2-based composite anodes depends on microstructural features such as particle size, tripe phase boundaries (TPB), surface area, and percolation. Some of the primary parameter can be manipulated during the materials synthesis. In this work the compound NiO–Ce0.9Gd0.1O1.95 (NiO–CGO), used as anode in SOFC, was synthesized by two different processes. Both of them are based on the polymeric precursormethod. Characterized by simultaneous thermogravimetry-differential thermal analysis, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and dilatometry. The refinement of the XRD data indicated that the composite sample synthesized by the process called “one step synthesis” produced smaller crystallite size in comparison to the sample attained by the two steps process. Simple preliminary performance tests were done with single cells in which such I–V curves indicated that the cell with one step anode had better performance. “One step synthesis” product, in situ nanocomposite, presented similar fine grained particle sizes for both phases Ni and CGO, which would be beneficial to the electrochemical activity, also indicated by first performance tests
publishDate 2011
dc.date.issued.fl_str_mv 2011-03-01
dc.date.accessioned.fl_str_mv 2021-03-29T18:08:45Z
dc.date.available.fl_str_mv 2021-03-29T18:08:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CELA, Beatriz ; MACEDO, Daniel A. de ; SOUZA, Graziele L. de ; MARTINELLI, A. E. ; NASCIMENTO, Rubens M. do ; PASKOCIMAS, C. A. . NiO-CGO in-situ nanocomposite attainment: one step synthesis. Journal of Power Sources (Print), v. 196, p. 2539-2544, 2010. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378775310019324?via%3Dihub Acesso em: 16 nov. 2020. https://doi.org/10.1016/j.jpowsour.2010.11.026.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/32019
dc.identifier.issn.none.fl_str_mv 0378-7753
dc.identifier.doi.none.fl_str_mv 10.1016/j.jpowsour.2010.11.026
identifier_str_mv CELA, Beatriz ; MACEDO, Daniel A. de ; SOUZA, Graziele L. de ; MARTINELLI, A. E. ; NASCIMENTO, Rubens M. do ; PASKOCIMAS, C. A. . NiO-CGO in-situ nanocomposite attainment: one step synthesis. Journal of Power Sources (Print), v. 196, p. 2539-2544, 2010. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378775310019324?via%3Dihub Acesso em: 16 nov. 2020. https://doi.org/10.1016/j.jpowsour.2010.11.026.
0378-7753
10.1016/j.jpowsour.2010.11.026
url https://repositorio.ufrn.br/handle/123456789/32019
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/32019/1/NiO%e2%80%93CGOInSitu_MARTINELLI_2011.pdf
https://repositorio.ufrn.br/bitstream/123456789/32019/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/32019/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/32019/4/NiO%e2%80%93CGOInSitu_MARTINELLI_2011.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/32019/5/NiO%e2%80%93CGOInSitu_MARTINELLI_2011.pdf.jpg
bitstream.checksum.fl_str_mv a738658331cadbe7cf26bcb81c3fe8b0
4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
36a812fb4a1687508f3df72c65ef51a2
b8be7ef7a085ac84b65797127c71ea62
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1797777174704422912